
Alma Mater Studiorum

Universit�a di Bologna

School of Engineering and Architecture
Information Technology Department

— Science and Engineering —

Degree in Computer Engineering

Degree Thesis
in

Calcolatori Elettronici T

Arduino projects for
educational purposes

candidate
Riccardo Muggiasca

supervisor
prof. ing. Stefano Mattoccia

Academic Year 2017/2018
Session VI – March 14th, 2019

Abstract

The thesis is about the necessity of implementing a new array of simple and yet stimulating
experiments with the use of the widely known Arduino Uno microcontroller board.
These exercises will be inserted into the course programme of Calcolatori Elettronici
T (Electronic Calculators – First-Cycle Degree) hosted by professor Stefano Mattoccia
at the School of Engineering and Architecture, Bologna University (Italy).

The work has been organized in the form of ready-to-action laboratory exercises, com-
plete with methodology, hardware and software components. These elements will prove
useful for studying the basic principles of computing hardware design and programming,
central themes of the professor’s course, in the hope to captivate the interest of students
and to make them become more focused and passionate about the subject itself.

Contents

1 Motivations 8
1.1 Introduction . 8
1.2 What are we going to talk about? . 8

2 The AVR Development Environment 9
2.1 Definitions . 9
2.2 Installation . 9
2.3 Compiling and Loading our Firmware . 10

3 The AVR Arduino custom library 12
3.1 How it is made . 12
3.2 avr arduino.h . 13

3.2.1 C preprocessor directives . 13
3.2.2 Inclusion of external libraries . 13
3.2.3 Macro definitions . 14
3.2.4 Function declarations . 14

3.2.4.1 Ports . 15
3.2.4.2 Bit indexes . 15
3.2.4.3 Value or direction? . 15
3.2.4.4 Data types . 15

3.3 avr arduino.c . 16
3.3.1 Inclusions and definitions . 16

3.3.1.1 port pin() function . 17
3.3.1.1.1 Behaviour . 17

3.3.1.2 port setup() function . 17
3.3.1.2.1 Behaviour . 17

3.3.1.3 port setup full() function 17
3.3.1.3.1 Behaviour . 18

4 Assembler 19
4.1 Why we do this . 19
4.2 Differences with DLX . 19
4.3 What we are going to do . 19
4.4 Schematic . 20

4.4.1 Technical notes . 20
4.5 What we need . 21
4.6 assembly.h . 21

4.6.1 Preprocessor directives . 21
4.6.2 Macro definitions . 21

3

4.6.3 register variables . 22
4.7 assembly.sx . 22

4.7.1 Why .sx and not .c? . 23
4.7.2 Inclusions and definitions . 23

4.7.2.1 asm add() function . 23
4.7.2.1.1 Labels . 23
4.7.2.1.2 Behaviour . 24

4.7.2.2 asm xor() function . 24
4.7.2.2.1 Behaviour . 24

4.7.2.3 asm lsl() function . 24
4.7.2.3.1 Behaviour . 24
4.7.2.3.2 Proper use . 24

4.8 led8.h . 25
4.8.1 Hardware compatibility disclaimer 25
4.8.2 Preprocessor directives . 25
4.8.3 Macro definitions . 25
4.8.4 Function declarations . 26

4.9 led8.c . 26
4.9.1 Inclusions and definitions . 28

4.9.1.1 led8 init() function . 29
4.9.1.1.1 Behaviour . 29
4.9.1.1.2 LEDs with negative logic 29

4.9.1.2 led8 start() function . 29
4.9.1.2.1 Behaviour . 29

4.9.1.3 led8 operands() function 29
4.9.1.3.1 Behaviour . 30
4.9.1.3.2 A NOT assignment 30

4.9.1.4 led8 math() function . 30
4.9.1.4.1 Behaviour . 30

4.9.1.5 led8 logic() function . 30
4.9.1.5.1 Behaviour . 31

4.9.1.6 led8 shift() function . 31
4.9.1.6.1 Behaviour . 31
4.9.1.6.2 Functional details 31

4.10 assembly.c . 32
4.10.1 Inclusions and definitions . 32

4.10.1.1 main() function . 33
4.10.1.1.1 Behaviour . 33
4.10.1.1.2 Endless loop . 33

5 Scoreboard 34
5.1 The SPI Interface . 34

5.1.1 Master and Slave . 34
5.2 The 1088AS 8x8 LED Matrix . 35

5.2.1 The single component . 35
5.2.2 How it works . 35

5.2.2.1 Connector pins . 35
5.2.2.2 Data transfer procedure 35

4

5.2.2.3 Data packet format . 35
5.2.2.4 Big Endianness . 36
5.2.2.5 Positive edge trigger and shifting 36

5.2.3 A LED matrix multiplied by 4 . 36
5.2.3.1 Led and bit mapping . 36

5.3 What we are going to do . 37
5.4 Schematic . 37

5.4.1 Arduino SPI pins . 37
5.5 What we need . 38
5.6 spi master.h . 38

5.6.1 Inclusions and definitions . 39
5.6.2 Function declarations . 39

5.7 spi master.c . 39
5.7.1 Inclusions and definitions . 40

5.7.1.1 spi init() function . 40
5.7.1.1.1 Behaviour . 40
5.7.1.1.2 Chip Select’s negative logic 40

5.7.1.2 spi send() function . 41
5.7.1.2.1 Variables and initialisation 41
5.7.1.2.2 Loop cycles . 41
5.7.1.2.3 Bit discrimination 41
5.7.1.2.4 Address/Data bit output 42
5.7.1.2.5 Clock positive edge trigger 42
5.7.1.2.6 Data transfer ending 42

5.8 ledmatrix.h . 42
5.8.1 Inclusions and definitions . 43

5.8.1.1 REG constants . 43
5.8.1.2 LEDS constants . 44
5.8.1.3 Generic constants . 44

5.8.2 Function declarations . 44
5.9 ledmatrix.c . 45

5.9.1 Inclusions and definitions . 48
5.9.1.1 ledmatrix setup() function 49

5.9.1.1.1 Behaviour . 49
5.9.1.2 ledmatrix operate() function 49

5.9.1.2.1 Behaviour . 49
5.9.1.2.2 Device-specific functional note 49

5.9.1.3 ledmatrix zero() function 50
5.9.1.3.1 Behaviour . 50
5.9.1.3.2 The influence of data overflow 50

5.9.1.4 ledmatrix example() function 50
5.9.1.4.1 Behaviour . 51
5.9.1.4.2 Letter data shifting 51
5.9.1.4.3 The four letters on display 51

5.9.1.5 ledmatrix random() function 51
5.9.1.5.1 Behaviour . 52
5.9.1.5.2 Alphanumeric note 52

5.10 scoreboard.c . 52

5

5.10.1 Inclusions and definitions . 52
5.10.1.1 main() function . 52

6 Sonar 53
6.1 The 1602A v2.0 16x2 LCD display . 53

6.1.1 How it works . 53
6.1.1.1 Connector pins . 53

6.2 The HC-SR04 ultrasonic distance sensor 54
6.2.1 How it works . 54

6.2.1.1 Pulse format . 54
6.2.1.2 Connector pins . 55

6.2.2 The speed of sound within the Arduino Uno 55
6.2.2.1 From meters to millimeters 55
6.2.2.2 ATmega’s counter recalibration 55

6.3 What we are going to do . 56
6.4 Schematic . 56

6.4.1 Relevant notes . 57
6.5 What we need . 57
6.6 lcd.h . 57

6.6.1 Inclusions and definitions . 58
6.6.2 Function declarations . 58

6.7 lcd.c . 59
6.7.1 Inclusions and definitions . 61

6.7.1.1 The firmware programmer’s extensive note 61
6.7.1.2 lcd ports() function . 62

6.7.1.2.1 Behaviour . 62
6.7.1.3 lcd data() function . 62

6.7.1.3.1 Behaviour . 63
6.7.1.3.2 Visibility . 63

6.7.1.4 lcd write() function . 63
6.7.1.4.1 Behaviour . 63
6.7.1.4.2 Visibility . 64

6.7.1.5 lcd setup() function . 64
6.7.1.5.1 Power-up delay 64
6.7.1.5.2 Device reset procedure 64
6.7.1.5.3 Final touches . 65

6.7.1.6 Note on lcd write() calling 65
6.7.1.7 lcd string() function . 65

6.7.1.7.1 Behaviour . 65
6.7.1.8 lcd line() function . 66

6.7.1.8.1 Behaviour . 66
6.8 sensor.h . 66

6.8.1 Inclusions and definitions . 67
6.8.1.1 volatile variables . 67

6.9 sensor.c . 68
6.9.1 Inclusions and definitions . 69

6.9.1.1 sensor ports() function 69
6.9.1.1.1 Behaviour . 69

6

6.9.1.2 sensor setup() function 69
6.9.1.2.1 Behaviour . 70

6.9.1.3 sensor trigger() function 70
6.9.1.3.1 Behaviour . 70

6.9.1.4 ISR(PCINT0 vect) interrupt handler 71
6.9.1.4.1 Behaviour . 71

6.10 sonar.c . 72
6.10.1 Inclusions and definitions . 73

6.10.1.1 main() function . 73

7 Conclusions 74
7.1 Arduino, but without its IDE . 74
7.2 The AVR Arduino library’s purpose . 74
7.3 The three experiments . 75
7.4 An open-sourced thesis . 75

7

Chapter 1

Motivations

1.1 Introduction

Well known for its era, the ATmega 328P[1] CPU by Atmel[2] was invented in the 1990s
and broadly used in the electronics industry ever since, to take advantage of its speed and
versatility. In recent years, that single 8-bit RISC[3] microprocessor has been implanted
onto the Arduino Uno[4] board and it is allowing all kinds of experiments, made by millions
of interested students and enthusiasts, doing it for work, research or simply leisure.

When these classes of people intersecate, it might mean you are facing yourself with a
Computer Science or Computer Engineering student. This short lecture has been written
specifically for this kind of audience, but every other passionate subject might find some
benefit from this relatively short, but nonetheless dense lecture, with a little bit of extra
work and self documentation.

Whether he or she will get a better orientation on the matter of tinkering with the
Arduino by doing some “simple” experiments, is left to the reader’s own consideration.

1.2 What are we going to talk about?

Proceeding step by step in configuration and method, we are going to start from the
hardware level, with a fundamental exercise regarding assembly language[5] and how it
handles hardware resources and data, to actually execute programmed instructions.

Then, we will proceed further by building a couple of practical examples of real world
applications, such as a LED[6] scoreboard lookalike and a sonar proximity sensor.

The latter of these experiments also features an interrupt[7] procedure calling scenario,
that will show us how firmware programs can handle an interrupt signal situation and
how we can set them in doing so.

8

Chapter 2

The AVR Development Environment

2.1 Definitions

To put our laboratory experiments into practice, we need dedicated pieces of hardware
and software, which are all properly described inside their own dedicated chapters.

Every piece of software has been written in pure C language[8], without any of the
comfort libraries naturally offered by the official Arduino project[9], in order to better
interact with all the hardware elements of the Arduino board.

In this case, the open-source AVR programming environment[10] comes to fruition,
a set of C program libraries designed to directly interact with the ATmega 328P micro-
processor, placed alongside an extract of the C standard library[11, 12]. We use just a
small subset of those libraries, the ones strictly needed to allow us to put our ideas into
practice.

The computing environment in which we operate is Ubuntu Linux[13], which is in turn
based on the Debian/GNU Linux[14] operating system; any Debian-derived distribution
released in recent years fully fits the purpose of what we do.

The only other mandatory requirement to fulfil is to have a standard USB 2.0 (or
newer/faster) port available, in order to properly connect the Arduino board to the PC,
to power it and to be able to program its internal firmware to suit our needs.

2.2 Installation

Once we have our Ubuntu Linux PC up and running, we need to prepare our development
environment. Open a terminal window[15], whether it is a simple terminal emulator or a
secondary tty interface and install the necessary software components, along with all of
their packets’ dependencies[16]:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install gcc-avr gdb-avr binutils-avr avr-libc avrdude

A little explanation of what these commands mean:

• sudo is the directive that allows us to gain superuser privileges. If enabled to
do so1, we are asked for our user’s password in order to be temporarily granted
administrator privileges and install the software we need;

1Please refer to proper Linux administration guidelines to get help on this topic.

9

• apt-get is the easiest Ubuntu’s package manager tool we can interact with;

• update checks for updates on every current software installed on our system;

• upgrade installs updates to every software packages the update command found to
be, in fact, updated;

• install <packet list> installs the specified software packets and, by default, all
of their own dependencies, which are other relevant software the declared packets
use to function properly; more in detail we have to install[17]:

– gcc-avr

the customized gcc compiler able to interact with the AVR program libraries;

– gdb-avr

the gcc AVR debugger, which we do not use, but still needed because of some
dependencies’ contraints;

– binutils-avr

the AVR binary utilities, such as linker (avr-ld), object file disassembler
(avr-objdump) and extractor (avr-objcopy). We are going to indirectly use
just the linker (avr-ld) through the compiler (avr-gcc), the other tools are
still needed because of dependencies’ contraints;

– avr-libc

the AVR C program library set, essential to compile our firmware;

– avrdude

firmware loader utility program, essential to load our firmware onto the Arduino
board through the USB interface;

We also need an advanced text editor to write C program files. I recommend choosing
any text editor which supports syntax highlighting, so as not to get lost among the lines
of code we have to deal with. Many of the built-in text editors of Ubuntu are fully
compatible with general programming writing tasks.

2.3 Compiling and Loading our Firmware

Every laboratory experiment requires the selected hardware to be properly assembled
together and the programmed firmware to be loaded onto the Arduino board to make
everything work.

To prepare our custom software to be loaded and executed we have to make use of the
development tools installed by the procedure just described in section 2.2 by using the
following commands[16, 18, 19, 21]:

sudo chmod a+rw /dev/ttyACM0

avr-gcc -Os -mmcu=atmega328p -DF_CPU=16000000UL -o prog.elf prog.c aux.c

avrdude -F -V -c arduino -p ATmega328P -P /dev/ttyACM0 -b 115200

-U flash:w:prog.elf:e

10

Here follows the detailed explanation of these commands:

• sudo chmod a+rw /dev/ttyACM0[18]

Enables the /dev Arduino (device) interface to be read and written by anyone in the
system, removing the need to prepone sudo to any other command regarding the
Arduino device. The setting is applied only until the Arduino remains connected to
the PC; if disconnected, the command has to be executed again.
NOTE: verify if your Arduino’s interface name is one of the following: /dev/ttyACM0,
/dev/ttyUSB0, /dev/ppi0 or /dev/cuaa0 so it has to be found in the /dev system
directory and specified accordingly.

• avr-gcc is our firmware’s compiler[19];
-Os makes sure to apply all the second-level compiler optimisations which do not
inflate the final binary code, because our firmwares are simple program routines and
must fit inside the 32 KB of the Arduino’s flash memory[20];
-mmcu=atmega328p specifies which architecture to compile our firmware for;
-DF CPU=16000000UL sets the ATmega 328P’s clock frequency to 16 MHz for the
program code to be compiled and executed. The letters UL at the end are indicative
of the unsigned long numeric data type;
-o prog.elf declares the name of the compiled final object file. The extension is
arbitrary, but the avr-gcc compiler outputs an ELF-compatible file (in Executable
and Linkable Format) so the .elf extension is suitable;
prog.c aux.c is just a list of C program files that have to be compiled in one
executable module, hence their arbitrary name. Necessary header files are automat-
ically included only if proper #include directives are written inside the .c files;

• avrdude is our firmware’s loader[21];
-F overrides check of device signature, so we can use the command with every
Arduino on earth without getting non-relevant error messages;
-V disables integrity checks for blocks of data when uploading to Arduino;
-c arduino specifies which method of programming (loading) has to be used, that
is heavily hardware dependent;
-p ATmega328P declares the type of MCU (Micro Controller Unit) present on the
Arduino board connected to the PC;
-P /dev/ttyACM0 the device to which the programmer is attached to the PC. Same
NOTE of the first command also applies here;
-b 115200 sets an explicit upper boundary for the baud rate to be applied. Default
value is unknown, so we normally use 115200 because it is specified in the official
Arduino documentation[22];
-U flash:w:prog.elf:e can be seen as a specification for:
-U memory-type:write-directive:file-to-load:file-format-specifier

In our case everything is referred to the ELF file format, which is the most common
compiled binary program format for UNIX-derived systems and the like[23];

11

Chapter 3

The AVR Arduino custom library

To write well done and efficient programs always requires effort. We could write everything
on our own, or we could choose to get some help to solve the issues that eventually arise.

Apart from the supporting/default/standard C libraries we use for our laboratory
experiments, there is also a custom-made library to employ, which simplifies the aspects of
machine control and data register operations (useful when communicating with secondary
hardware devices).

Here is its detailed explanation, worth of a deep look, before moving on with the actual
experiments.

3.1 How it is made

avr arduino is a library specifically designed to realize the fundamental and common
pieces of code found inside the laboratory experiments described in this thesis.

It is not delivered as a ready-to-use pre-compiled black box, because of the divulgative
reasons that accompany the experiments with Arduino we are going to discuss.

This simple C program library is in fact composed by the files:

• avr arduino.h

the library’s header file, to be included in all of our laboratory projects;

• avr arduino.c

the library’s program file, which implements and makes use of the constant and
function declarations found inside the header file;

We now introduce these two files in more detail, starting on the next page, by looking at
their source code and commenting it where necessary.

12

3.2 avr arduino.h

// our library definition

#ifndef AVR_ARDUINO

#define AVR_ARDUINO

// inclusion of fundamental libraries

#include <avr/io.h>

#include <avr/interrupt.h>

#include <util/delay.h>

// macro definitions

#define BYTE unsigned char

#define IN 0

#define OUT 1

#define LOW 0

#define HIGH 1

// single-bit port value extraction

BYTE port_bit(BYTE port,BYTE bit_index);

// single-bit port register assignment

BYTE port_setup(BYTE port,BYTE bit_index,BYTE value_direction);

// full-byte (with exception) port register assignment

BYTE port_setup_full(BYTE port,BYTE value_direction);

#endif

3.2.1 C preprocessor directives

Each declaration starting with # is a C source preprocessor directive[24], which helps the
compiler to get the right amount of source code to verify and build.

#ifndef is a preprocessor directive made to verify if the subsequent amount of code
has already been included in the compiling process (or #defined, as the following directive
says) by giving it a unique name.

#endif at the end closes the conditional source inclusion block. These directive struc-
tures are commonly called as include guards [25]. A double occurrence of the same entity
always causes a fatal error to the C compiler.

3.2.2 Inclusion of external libraries

#include is the directive dedicated to actually “include” other pieces of code inside the
current source file, to get a full reference on which external programming functionalities
are available and how to use them. They will later be compiled and linked together with
our own program’s code.

13

Standard libraries contained inside the C compiler include paths are to be written as
a relative path inside the < and > symbols; custom-made libraries (therefore located out-
side such inclusion paths) have to be specified with their absolute path instead, written
inside the "" symbols.

To make our custom library work, we have to include the following source components[12]:

• avr/io.h

Contains every low-level machine reference on registers and input/output interfaces.
The target microcontroller hardware is always specified at compile time, as seen in
section 2.3.

• avr/interrupt.h

It offers various functionalities that are dedicated to interrupt signals’ handling.

• util/delay.h

As its name suggests, contains execution delay functions, useful for timed instruction
execution, as we will be able to see during the lab experiments.

3.2.3 Macro definitions

In C programming, macros are basically small sections of code that are rewritten in a
more synthetic and comprehensible way, to be substituted with their original content by
the C preprocessor at compile time[24]. Taking by example the first of them we have:

#define BYTE unsigned char

This directive defines the unsigned char data type as being named simply BYTE (all
in capital letters). This is not a new data type1, but instead it is just a simpler way to
write the data type specification “unsigned char” in a more compact and easy format,
inside every source file that might include this avr arduino.h header file in particular.

The rest of them are just alternative names for the numbers 0 (IN,LOW) and 1 (OUT,HIGH)
and will prove useful when writing calls to the functions we are about to introduce.

3.2.4 Function declarations

Last but not least, every function in a C program which is not identified as main()

(the function in which the program execution starts) needs to be declared first and then
defined second[26], especially if it is located in a different .c file (or module) than the
main() function.

The avr arduino library contains the following functions:

• BYTE port bit(BYTE port,BYTE bit index);

It is capable of extracting the single bit value contained inside the port variable at
position bit index, the latter ranging from 0 to 7 (eight bits in total).

• BYTE port setup(BYTE port,BYTE bit index,BYTE value direction);

It sets the value expressed by value direction of the bit indicated by bit index

inside the 8 bit word identified by port. It then returns the updated value of
the same port passed as input, to be assigned to the correct port selected by the
programmer.

1See typedef directive in the C language specification.

14

• BYTE port setup full(BYTE port,BYTE value direction);

Same behaviour as the first function, but missing the bit index parameter. This
means the “full” function replicates the value direction bit for each and every
bit inside the selected port register.

Let us now have a look to the minimal peculiarities that are common to each of them.

3.2.4.1 Ports

The name “port” has been chosen to reflect the actual communication ports of the ATmega
328P microprocessor and, by extension, the ones available on the Arduino board[27]. Those
are identified as PORTB, PORTC and PORTD.

PORTB, and PORTD have an 8 bit resolution, while PORTC has just a 7 bit resolution,
because of the technical design and package characteristics of the ATmega 328P itself[28].

Same properties reflect to the Data Direction Registers, which are basically the setup
registers for the pins of those three ports we mentioned. Those are DDRB, DDRC and DDRD

and their resolution is the same as their PORT counterparts.

3.2.4.2 Bit indexes

Bits are of course numbered from 0 to 7 and correspond to a set of keywords widely used
in AVR low-level programming.

For instance, considering PORTB, we have {PORTB0,PORTB1,. . . ,PORTB7} and the same
goes for the other two ports (remember that PORTC has only 7 bits to operate on).

Same rule is applied to the Data Direction Register bits; considering DDRB, we have
{DDB0,DDB1,. . . ,DDB7} and the format is equally applied to the other two registers.

3.2.4.3 Value or direction?

Here is why those #define directives of alternative names for the numbers 0 and 1 happen
to be useful, as described in section 3.2.3.

When handling ports, it comes natural to think about the logical level, or value, that
pin or port should assume, so we could say LOW or HIGH respectively.

Instead, when thinking about data direction settings, we are more naturally inclined
towards the keywords IN and OUT.

In reality, there is no difference between the values we use, but in this way these
functionalities become easier to understand and code.

3.2.4.4 Data types

Each data type used by those functions is denoted as BYTE, the same data type defined
earlier in section 3.2.3. Having to dialogue directly with the 8 bit registers of the ATmega
328P microprocessor, a BYTE is in fact the only data type we care about and it is just a
binary number, independent of the meaning we might associate to it.

In this way, we build a weakly typed programming environment in which the meaning
of data is directly handled by us; this gives us the possibility to fully understand what we
are doing, which is one of the main goals we want to achieve.

15

3.3 avr arduino.c

// inclusion of this library’s header file

#include "avr_arduino.h"

// single-bit port value extraction

BYTE port_bit(BYTE port,BYTE bit_index)

{

return port & (1 << bit_index);

}

// single-bit port register assignment

BYTE port_setup(BYTE port,BYTE bit_index,BYTE value_direction)

{

if(value_direction)

port |= (1 << bit_index);

else

port &= ~(1 << bit_index);

return port;

}

// full-byte port register assignment

BYTE port_setup_full(BYTE port,BYTE value_direction)

{

// PORTC resolution is 7 bits instead of 8

// because Arduino and ATmega328P are built this way

if(port == PORTC)

{

if(value_direction)

port = 0b1111111;

else

port = 0b0000000;

}

else

{

if(value_direction)

port = 0b11111111;

else

port = 0b00000000;

}

return port;

}

3.3.1 Inclusions and definitions

The avr arduino.c implementation file starts with the inclusion of its own header, con-
taining all the macro and function declarations we have seen earlier, so as to employ them
properly inside this C module.

16

3.3.1.1 port pin() function

BYTE port_bit(BYTE port,BYTE bit_index)

{

return port & (1 << bit_index);

}

3.3.1.1.1 Behaviour The function’s body is made by just a single line of code: it
returns the bitwise AND logical operation’s result between the parameter port and the
constant value 1, logically shifted by bit index positions.

3.3.1.2 port setup() function

BYTE port_setup(BYTE port,BYTE bit_index,BYTE value_direction)

{

if(value_direction)

port |= (1 << bit_index);

else

port &= ~(1 << bit_index);

return port;

}

3.3.1.2.1 Behaviour It realizes the behaviour described in 3.2.4 by evaluating if the
least significant bit of value direction is different from 0.

If so, it shifts the number 1 (00000001 in binary) for bit index positions and puts it
in logical OR with the 8 bit word given by port, thus setting the bit found in position
bit index to 1 if it was originally 0, or leaving it to 1 if it was already of that value.

If the least significant bit of value direction is actually 0, then the function shifts
the number 1 (00000001 in binary) for bit index positions, performs a bitwise NOT
(thanks to the tilde operator) and puts it in logical AND with the 8 bit word given by
port, thus setting the bit found in position bit index to 0, independently of its original
value.

The final result of each operation is set into the port variable and returned to the
function caller at the end.

3.3.1.3 port setup full() function

BYTE port_setup_full(BYTE port,BYTE value_direction)

{

// PORTC resolution is 7 bits instead of 8

// because Arduino and ATmega328P are built this way

if(port == PORTC)

{

if(value_direction)

port = 0b1111111;

else

port = 0b0000000;

}

17

else

{

if(value_direction)

port = 0b11111111;

else

port = 0b00000000;

}

return port;

}

3.3.1.3.1 Behaviour At first, it verifies if the port variable’s value is equivalent to
the one of PORTC. If so, the assignable word to the port variable will be of 7 bits of
resolution instead of 8.

Finally, the function operates a full assignment of a zero-word or a one-word to the
port variable and returns its value to the function caller at the end.

18

Chapter 4

Assembler

The first laboratory experiment we tinker with is the assembler programming exercise,
that stands out a little from the others that follow. To be able to handle the computer
machine properly and to program it in the best and efficient way, any knowledge on the
underlying hardware architecture is always welcomed and essential.

4.1 Why we do this

When in need to stay in close proximity to the hardware level, a number of considerations
must take place. We don’t just need to translate our program logic into code, we also
have to be careful about the physical architecture our microprocessor has been designed
on, by taking into consideration its functioning and efficiency issues.

Chapter 3 introduced not only two useful libraries we are going to use for our ex-
periments, but also some hardware notions that justified their development. This is our
simplified way to have a look inside the ATmega 328P microprocessor, to see what hap-
pens with the CPU registers and to be able to directly pilot data flow and instruction
execution.

4.2 Differences with DLX

This example can be put in parallel with what one might have studied about DLX
(DeLuXe) architecture scheme and instruction set[29]. The ATmega 328P is based on
a very similar model, but astrays itself from it, because of its proprietary origin and
design.

Any comment on the existing differences between the two assembly language versions
is denoted inside the respective sections that follow.

4.3 What we are going to do

In this laboratory experiment we will be able to realize some simple math and logic
operations with two 8 bit data words (named op1 and op2) and to have them directly
executed by sections of explicitly written assembler code, instead of by the usual pure C
language math operators.

The final result of each of these operations will be shown in binary format by an 8 bit
led row, properly activated by our code.

19

4.4 Schematic

4.4.1 Technical notes

Standard Red Led supply[20]

Voltage 2.0 V
Current 20 mA

Arduino PIN supply[31]

Voltage 5.0 V or 3.3 V
Current 40 mA or 20 mA

Every standard red led canonically functions with a supply voltage of 2.0 V and a current
of 20 mA, while the Arduino can power up small devices in configurations of 5.0 V and
3.3 V, with each data pin outputting about 40 mA or 20 mA in current, depending on
the Arduino’s hardware revision.

A supply current of 40 mA can be too much for our leds, which in almost every
hardware application need a proper resistor to pull down the supply current a bit, so as
not to break them.

The component used in this example is a pre-built 8 bit led row, already equipped
with parallel resistors for each one of the leds. If we are not able to use such a component,
8 red leds with a pull-up resistor of about 220 Ω each (as shown above in the schematic)
should work fine.

20

4.5 What we need

The components for this experiment are:

• an Arduino Uno compatible board

• a USB printer cable

• a 8 red led row

• the source project files, consisting of:

– the assembler header (assembly.h) and instructions (assembly.sx) files

– the utility “led row” source files, header (led8.h) and implementation (led8.c)

– the main program module (assembly.c)

Here follows the detailed explanation for each source file in this order. The assembly
implementation file is of extension .sx instead of .c, it is not a mistake, but this aspect
is going to be explained in a later section.

4.6 assembly.h

// global register variables declaration

// the name the compiler defines when handling assembler code

#ifdef __ASSEMBLER__

#define op1 r2

#define op2 r4

#define res r6

#else // not in assembler compiling context

// so we compile C language instead

register unsigned char op1 asm("r2");

register unsigned char op2 asm("r4");

register unsigned char res asm("r6");

#endif

4.6.1 Preprocessor directives

Conditional definition of ASSEMBLER context, which is a standard name for the avr-gcc
compiler to refer to if dealing with assembler code. The file is in fact organized to be
handled both by the C compiler and/or the Assembler compiler[32].

4.6.2 Macro definitions

The key point of this header file is to define names that differ from the explicit inter-
nal general purpose registers of the ATmega microprocessor, in order to have a better
comprehension of which data we are dealing with.

21

Both sections in the header file define alternative names to be used for registers
r2,r4,r6 by mapping them respectively to names op1,op2,res which mean: operand
one (op1), operand two (op2), final result (res).

4.6.3 register variables

More specifically, the second section of the header file (after the #else directive) defines
three register variables[33], by the same name-register association described earlier.

Those variables will be directly mapped onto the specified registers in the assembly
(asm) context and operations that involve their use will apply their effect on the mapped
internal registers of the ATmega 328P microprocessor.

4.7 assembly.sx

#include "assembly.h"

; simple operational math

; and logic functions

; taken from the official

; ATmega 328P datasheet

; arithmetic operations

; push/pop methodology

.global asm_add

asm_add:

push op1

add op1,op2

mov res,op1

pop op1

ret

.global asm_sub

asm_sub:

push op1

sub op1,op2

mov res,op1

pop op1

ret

; MUL result is placed in R1:R0

.global asm_mul

asm_mul:

push op1

mul op1,op2

mov res,r0

pop op1

ret

; logical operations

; mov to a register methodology

.global asm_and

asm_and:

mov r12,op1

and r12,op2

mov res,r12

ret

.global asm_or

asm_or:

mov r12,op1

or r12,op2

mov res,r12

ret

.global asm_xor

asm_xor:

mov r12,op1

eor r12,op2

mov res,r12

ret

; we just shift the previous result

; we had from a past operation

.global asm_lsl

asm_lsl:

lsl res

ret

22

.global asm_lsr

asm_lsr:

lsr res

ret

4.7.1 Why .sx and not .c?

The reason why this assembly program module brings the .sx extension is simple; accord-
ing to the avr-gcc specifications, it is possible to actually mix C and Assembly language
inside the same firmware project[32].

More than that, we are able to write “special” source files, in which C and Assembler
code can coexist and interact without special declarations, but one: they must have the
.sx extension, in order to be properly recognised by the compiler.

Afterwards, the C and the Assembly compiler are automatically called whenever nec-
essary and the program code gets compiled in its entirety.

4.7.2 Inclusions and definitions

The assembly.sx program module includes the assembly.h header, containing all the
macro declarations we have seen earlier.

It then defines the math and logical functions, which realize the following operations:

Operation Type Description Function Name
arithmetical sum asm sum()

subtraction asm sub()

multiplication asm mul()

logical and asm and()

or asm or()

exclusive or asm xor()

logical shift left asm lsl()

logical shift right asm lsr()

We now take some of the functions and examine them in more detail, as an example of
how the code has been written[34].

4.7.2.1 asm add() function

.global asm_add

asm_add:

push op1

add op1,op2

mov res,op1

pop op1

ret

4.7.2.1.1 Labels .global is the assembly directive which declares the code label
asm add as a callable reference in the whole program, not just inside the assembly.sx

module[35].
When programming directly with assembly language, we have in fact to reason not

by “functions”, but by relative memory addresses in which to find the next program

23

instruction to execute. Labels such as asm add allow us to directly jump the execution to
the desired section of our program.

4.7.2.1.2 Behaviour This sequence of instructions simply “pushes” to the stack[36]

the contents of the register identified by op1; it then adds the content of op1 with op2

and puts the operation’s result inside the op1 register.
This final result is copied (moved) inside the res(ult) register and finally the original

op1 value is “popped” off the stack and put inside the actual register op1, restored to be
used in a possible next operation.

The ret instruction virtually “closes” the function, by terminating the current in-
struction sequence and returns to the caller.

4.7.2.2 asm xor() function

.global asm_xor

asm_xor:

mov r12,op1

eor r12,op2

mov res,r12

ret

4.7.2.2.1 Behaviour This sequence of instructions simply copies to the register r12

(arbitrarily chosen by the programmer) the contents of the register identified by op1.
It then executes and exclusive OR logical operation between r12 and op2 and puts

the result inside the r12 register.
From there, the result is copied into the res register and the sequence of instructions

gets terminated by the ret directive.

4.7.2.3 asm lsl() function

.global asm_lsl

asm_lsl:

lsl res

ret

4.7.2.3.1 Behaviour In this case the instruction sequence is plainly simple: the con-
tent of res register is shifted to the left by one bit and the block terminates right after
with the ret instruction.

4.7.2.3.2 Proper use This function needs preparation by the program section which
calls it. It is needed to have a significant value inside the res register before calling this
procedure, because it only shifts a register’s content without making any assignment first.
This is something to be handled externally[34].

24

4.8 led8.h

#ifndef LED8

#define LED8

#define ONE_SEC 1000

#define TWO_SEC 2000

#define BLK_SEC 250

void led8_init();

void led8_start();

void led8_operands();

void led8_math();

void led8_logic();

void led8_shift();

#endif

4.8.1 Hardware compatibility disclaimer

Please keep in mind that it is not necessary to have exactly the same led hardware
component that has been used in this project.

Instead of a pre-built 8 led row it is possible to make use of 8 single red leds, connected
to the Arduino in the same way the schematic described in section 4.4 and they remain
fully compatible with the illustrated program code.

4.8.2 Preprocessor directives

Conditional definition of LED8 section name, containing a block of constants and function
declarations related to the 8 led row used in the experiment. As already described in
section 3.2.1, this is done to prevent multiple inclusions of a header file.

4.8.3 Macro definitions

Only three macros are defined in this header file and they are all referred to some standard
milliseconds amounts to be used in the implementation file. ONE SEC and TWO SEC can
be considered self-explanatory, BLK SEC instead refers to a “blink” seconds time interval,
which in fact lasts just a quarter of a second.

Those are employed to delay code execution a bit, to give the user a small time to
properly read the leds’ output configuration.

25

4.8.4 Function declarations

Six functions are declared, each of them with no explicit parameter, no return data and
with the “led8” prefix, to be easily recognisable in the code.

• led8 init()

Initialises the ATmega 328P communication port to which the 8 leds are attached;

• led8 start()

Generates an output start sequence for the 8 leds, by making them blink a number
of times (this is where BLK SEC is used);

• led8 operands()

Shows the binary output of the two numeric operands used for the math and logic
operations;

• led8 math()

Executes the math operations explained in section 4.7.2 and outputs their result on
the 8 leds;

• led8 logic()

Executes the logic operations explained in section 4.7.2 and outputs their result on
the 8 leds;

• led8 shift()

Creates a sample result and shifts it left and right on the 8 bits, as if it is “moving”;

4.9 led8.c

#include "led8.h"

#include "avr_arduino.h"

#include "assembly.h"

// port D register output initialization for led row

void led8_init()

{

PORTD = port_setup_full(PORTD,HIGH);

DDRD = port_setup_full(DDRD,OUT);

}

// three 8-bit led blinks, acting as a visual start signal

void led8_start()

{

PORTD = port_setup_full(PORTD,LOW);

_delay_ms(BLK_SEC);

PORTD = port_setup_full(PORTD,HIGH);

_delay_ms(BLK_SEC);

PORTD = port_setup_full(PORTD,LOW);

_delay_ms(BLK_SEC);

PORTD = port_setup_full(PORTD,HIGH);

26

_delay_ms(BLK_SEC);

PORTD = port_setup_full(PORTD,LOW);

_delay_ms(BLK_SEC);

PORTD = port_setup_full(PORTD,HIGH);

_delay_ms(BLK_SEC);

}

// led output blinks of the two operands

void led8_operands()

{

PORTD = ~(op1);

_delay_ms(TWO_SEC);

PORTD = ~(op2);

_delay_ms(TWO_SEC);

PORTD = port_setup_full(PORTD,HIGH);

_delay_ms(ONE_SEC);

}

// execution of some math operations (witten in assembly language)

// with led output blink and some waiting time for human reading

void led8_math()

{

asm_add();

PORTD = ~(res);

_delay_ms(TWO_SEC);

asm_sub();

PORTD = ~(res);

_delay_ms(TWO_SEC);

asm_mul();

PORTD = ~(res);

_delay_ms(TWO_SEC);

}

// execution of some logical operations (written in assembly language)

// with led output blink and some waiting time for human reading

void led8_logic()

{

asm_and();

PORTD = ~(res);

_delay_ms(TWO_SEC);

asm_or();

PORTD = ~(res);

_delay_ms(TWO_SEC);

27

asm_xor();

PORTD = ~(res);

_delay_ms(TWO_SEC);

}

// execution of some shift operations (written in assembly language)

// with led output blink and some waiting time for human reading

void led8_shift()

{

// calculating an example result to shift around

asm_add();

asm_lsl();

PORTD = ~(res);

_delay_ms(ONE_SEC);

asm_lsl();

PORTD = ~(res);

_delay_ms(ONE_SEC);

asm_lsr();

PORTD = ~(res);

_delay_ms(ONE_SEC);

asm_lsr();

PORTD = ~(res);

_delay_ms(ONE_SEC);

}

4.9.1 Inclusions and definitions

#include "led8.h"

#include "avr_arduino.h"

#include "assembly.h"

The led8.c program module starts with the inclusion of three header files:

• led8.h for its local function definitions we saw earlier in section 4.8

• avr arduino.h to be able to make use of its port and pin manipulation functions,
namely port setup() and port setup full()

• assembly.h to make direct use of some ATmega 328P internal registers and their
name aliases, namely op1, op2, res

28

4.9.1.1 led8 init() function

void led8_init()

{

PORTD = port_setup_full(PORTD,HIGH);

DDRD = port_setup_full(DDRD,OUT);

}

4.9.1.1.1 Behaviour This function initialises the PORTD communication port, where
the 8 led cathode pins are connected.

First, it sets all 8 port pins to logical level HIGH, it then enables the output direction
again for all 8 port pins. Reversing the execution of those two instructions produces the
same result.

4.9.1.1.2 LEDs with negative logic The 8 leds stay off during the initialisation
because the 8 bit led row used in this example experiment works in negative logic; in fact,
each of the leds is attached to the Arduino/ATmega 328P’s PORTD pins by the diode’s
cathode terminal.

It must be remembered that the electrical current inside a LED always flows in by the
anode (+) and then flows out of the cathode (-), it is not possible to make it in reverse;
diodes are specifically designed to be powered in one direction only[37].

4.9.1.2 led8 start() function

void led8_start()

{

PORTD = port_setup_full(PORTD,LOW);

_delay_ms(BLK_SEC);

PORTD = port_setup_full(PORTD,HIGH);

_delay_ms(BLK_SEC);

... // repeated three times

}

4.9.1.2.1 Behaviour This function turns on and off all of the 8 leds at once for three
times; it does that without a for cycle, not wanting to allocate another variable and
more operative code needed for such a simple task. In addition, the repeated code gives
a clearer idea of what actually happens to the PORTD pins.

4.9.1.3 led8 operands() function

void led8_operands()

{

PORTD = ~(op1);

_delay_ms(TWO_SEC);

PORTD = ~(op2);

_delay_ms(TWO_SEC);

PORTD = port_setup_full(PORTD,HIGH);

_delay_ms(ONE_SEC);

}

29

4.9.1.3.1 Behaviour This operands-dedicated function introduces a shortcut in port
bit activation. To visualise the two operands, it shows them one after the other every two
seconds and then turns off all leds for just one second, before returning the execution to
the caller.

4.9.1.3.2 A NOT assignment The single operands are shown on the 8 led row
simply by assigning their BYTE value to PORTD. Before assigning though, the tilde (∼)
operator executes a bitwise NOT (one’s complement) to all of the 8 bits of the BYTE data,
because the 8 bit led row used in our example works in negative logic, as already stated
in section 4.9.1.1.2.

4.9.1.4 led8 math() function

void led8_math()

{

asm_add();

PORTD = ~(res);

_delay_ms(TWO_SEC);

asm_sub();

PORTD = ~(res);

_delay_ms(TWO_SEC);

asm_mul();

PORTD = ~(res);

_delay_ms(TWO_SEC);

}

4.9.1.4.1 Behaviour The function simply calls every math functionality that has
been written in assembly language (as seen in section 4.7) and visualises their result on
the 8 bit led row by assigning the res value to PORTD (as explained earlier in 4.9.1.3.2).
It then waits two seconds before continuing with the next instruction.

4.9.1.5 led8 logic() function

void led8_logic()

{

asm_and();

PORTD = ~(res);

_delay_ms(TWO_SEC);

asm_or();

PORTD = ~(res);

_delay_ms(TWO_SEC);

asm_xor();

PORTD = ~(res);

_delay_ms(TWO_SEC);

}

30

4.9.1.5.1 Behaviour The function is a direct mirror of the led8 math() function,
described in the previous section 4.9.1.4 but, instead of math functions, it simply calls
every logical functionality that has been written in assembly language (as seen in section
4.7). It then visualises their result on the 8 bit led row and waits two seconds before
moving to the next instruction.

4.9.1.6 led8 shift() function

void led8_shift()

{

// calculating an example result to shift around

asm_add();

asm_lsl();

PORTD = ~(res);

_delay_ms(ONE_SEC);

asm_lsl();

PORTD = ~(res);

_delay_ms(ONE_SEC);

asm_lsr();

PORTD = ~(res);

_delay_ms(ONE_SEC);

asm_lsr();

PORTD = ~(res);

_delay_ms(ONE_SEC);

}

4.9.1.6.1 Behaviour The shift function simply calculates a sample result, to be
placed in the variable/register recognisable as res, and then shifts it two times to the
left (towards the most significant bit) and two other times on the right (towards the least
significant bit).

4.9.1.6.2 Functional details The sample result is given by the execution of the
asm add() function, that updates the value of res variable/register.

For each operation, the result is shown on the 8 bit led row and there is a waiting time
of just one second, to make the four shifts happen as a sort of continuous animation.

31

4.10 assembly.c

#include "assembly.h"

#include "led8.h"

void main(void)

{

// operands initialization (example values)

// 14 = 1110 and 7 = 0111

op1=14,op2=7,res=0;

// 8 led row initialization

led8_init();

// endless execution loop of math and logical operations

// each of them is shown with led blink outputs

while(1)

{

led8_start();

led8_operands();

led8_math();

led8_logic();

led8_shift();

}

}

The assembly.c program file is the main file of this little project, in which the main()

function of our firmware is found.

4.10.1 Inclusions and definitions

#include "assembly.h"

#include "led8.h"

The led8.c program module includes just a couple of header files:

• assembly.h to be able to configure the preferred ATmega 328P internal registers
op1, op2 and res

• led8.h to make use of the led8 function family

avr arduino.h is not directly included here, because its functionalities are not needed
inside this C module.

32

4.10.1.1 main() function

void main(void)

{

op1=14,op2=7,res=0;

led8_init();

while(1)

{

led8_start();

led8_operands();

led8_math();

led8_logic();

led8_shift();

}

}

4.10.1.1.1 Behaviour This main() function doesn’t have a return value nor any
input parameters, thus they are ignored if somewhat provided.

It assigns exemplary numerical values to the variables/registers, specifically chosen
to create some variety of bit configurations when recalculated by the math and logic
operations already examined:

• op1 = 14 = 00001110

• op1 = 7 = 00000111

Right after that, the main() function initialises the dedicated port communication pins to
be used in output mode, but every avr arduino library function usage is hidden behind
the led8 init() function call.

4.10.1.1.2 Endless loop Lastly, we have an endless loop cycle composed by a while(1)
construct; the “repeat condition” inside the brackets is always true, because the constant
number 1 always stays different from zero, which would be false [38].

Inside the loop, we have those functions which actually calculate the result and output
it by activating the 8 bit led row, called in this specific order:

1. led8 start()

2. led8 operands()

3. led8 math()

4. led8 logic()

5. led8 shift()

This sequence of five function calls is then repeated an unlimited number of times, because
of the endless loop construct.

This is not something of concern, because it is typical of firmware programs to have
a cyclic program structure, which enables them to keep doing their own target actions,
such as waiting for input, sensor monitoring, etc.

33

Chapter 5

Scoreboard

The second laboratory experiment we are going to discuss about is aimed to focus on a
more complex device and on its dedicated way to communicate to it.

When tinkering with leds, as we have seen in the previous experiment, it is just about
turning on and off some virtual switches, in the form of digital output pin levels, HIGH
and LOW.

In this experiment, we have to properly communicate with a device that comes with
an ordered and predefined set of leds installed and not directly available to us. In fact, we
have to pass through a pre-built logical interface to indirectly “pilot” the leds’ activation,
and so we are bound to know in detail how to “talk” to this device.

We now give a proper introduction to these new project elements, before moving on
with the actual experiment.

5.1 The SPI Interface

The acronym SPI stands for Serial Peripheral Interface and, as the name suggests, it
allows a fixed and easy way of communicating with peripheral devices.

In most implementations, input and output data flows are in parallel and a device
(such as the Arduino) can send and receive serial information (one bit after the other) at
the same time, giving it the form of a full-duplex data channel[39].

5.1.1 Master and Slave

Communication between two devices is realised by a master-slave model. No standard
protocol is used to negotiate these roles, it all depends on the specific behaviour of their
own interfaces.

Different pins are usually employed to transfer data: the MOSI pin (Master Out
Slave In) and the MISO pin (Master In Slave Out). Having two different pins allows a
bidirectional data transfer if it is clear which device acts as master and which is dependent
by it[40].

Our case is much more simpler to handle; we are going to design a single master SPI
interface (implemented by the Arduino) and treat the target device as a slave, by using
the MOSI pin only and fully respecting the device’s use specifications.

34

5.2 The 1088AS 8x8 LED Matrix

5.2.1 The single component

This device is formed by an 8x8 led matrix with 16 pins. It is most often assembled
together with a MAX7219 8-digit led display driver, which offers a serial interface to the
outside world.

Originally designed for 7-segments number led displays, the MAX7219 decoder-driver
can properly remap and pilot a 8x8 led matrix. According to its own datasheet, the
MAX7219 is not fully compatible with the SPI[41], so we are going to emulate its “data
sending algorithm” ourselves in the firmware code.

5.2.2 How it works

5.2.2.1 Connector pins

The 8x8 led matrix’s pins are a total of five:

• Vcc (5 V is the recommended input voltage)

• GND

• DIN (Data Input pin)

• CS (Chip Selector pin)

• CLK (Clock Pulse pin)

5.2.2.2 Data transfer procedure

To send data from the Arduino to the matrix device, of course the device itself needs to
be powered up. Then, a very specific series of operations is necessary for the device to
properly work[41, 42]:

1. the CS pin is brought to logical level LOW

2. the DIN pin is updated with the logical level of interest (HIGH or LOW)

3. the CLK pin is brought to logical level HIGH (positive edge trigger), to have the
bit acquired by the decoder-driver

4. the CLK pin is brought to logical level LOW

5. the CS pin is brought to logical level HIGH, applying the modifications set by the
received information by adjusting led on/off states

5.2.2.3 Data packet format

The step sequence of phases 2,3,4 has to be executed 16 times, because of the data packet
format accepted by the MAX7219 decoder-driver, described below[41]:

D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
address data

35

The four MSBs [D15. . . D12] are sent first and then immediately ignored, but must
always be sent either way, because the packet format cannot be changed.

Then, the other four MSBs [D11. . . D8] are sent and represent the matrix’s target
column address we want to send our 8-bit data word into, to (de)activate its leds in the
proper way.

Finally the remaining 8 LSBs [D7. . . D0] contain the activation data for the selected
column’s leds, with each led being set by the state of the single bit that is found in the
same position.

5.2.2.4 Big Endianness

Every 16-bits data packet has to be prepared in Big Endian mode[41]. This means that the
necessary information have to be sent in order and from the most significant bit (MSB)
to the least one (LSB).

As seen above in 5.2.2.3, all of the ignored, address and data “subpackets” have to be
sent in this described order and in Big Endian format.

5.2.2.5 Positive edge trigger and shifting

At every positive clock edge, not just the selected one, but every internal data register is
shifted one bit forward, to make room for the newly acquired bit.

If set in a specific configuration, each led column preserves its internal state even after
poweroff and is able to restore it when turning the matrix on again.

5.2.3 A LED matrix multiplied by 4

The actual component that needs to be used in this experiment is the 4 matrixes version
of the single component that has just been described.

Its way of functioning remains the same, with just one difference: each 16-bit word
overflows into the flollowing matrix one bit at a time for each clock pulse (positive edge
triggered).

This can be regarded as the device’s data overflow mechanism, permitted by the
Daisy Chain configuration of the led matrixes, which are placed one after the other and
connected by their respective SPI pins as if they were forming a chain[43].

5.2.3.1 Led and bit mapping

When preparing data to be sent to the led matrix array, it must be noted that, by keeping
the connector pins on the right and according to the MAX7219 datasheet[41]:

• the numbering of led columns (or lines, given this new perspective) goes from top
to bottom, with the indexes 1 to 8 (not from 0 to 7 !)

• single leds are numbered from 0 to 7 moving from right to left

To sum up, the bit and line numbering starts from the upper right corner of the four
matrixes block, if keeping the connector pins on your right.

36

5.3 What we are going to do

For the sake of simplicity, instead of realising an actual scoreboard to be used, for example,
in a basketball game, we concentrate on how this scoreboard actually works and what we
can do with it.

So, in this project we are going to:

1. alternatively turn on and off the four matrixes by using their test mode (explained
later)

2. write the universally famous “LOVE” word, letter by letter on each of the four
matrixes

3. fill the four matrixes with randomly generated on/off configurations of leds which
change every half a second

5.4 Schematic

5.4.1 Arduino SPI pins

Even though the SPI is going to be just emulated, connecting to the dedicated interface
pins on the Arduino is still a good choice, to get to know better a widespread communi-
cation interface, that is found on many other devices too.

The figure that can be found on the next page shows:

• which digital pins on the Arduino (the ones of the ATmega 328P) are dedicated to
the SPI pins, described in section 5.1.1

• the actual order in which the 4 led matrixes component are found and connected to
the Arduino

In the previous section’s schematic there is an extra pin, which has to be ignored, because
it is not present on the actual hardware component.

37

Power

Ground

Programming/debug

Digital

Analog

Crystal/Osc

(PCINT14/RESET) PC6

(PCINT16/RXD) PD0

(PCINT17/TXD) PD1

(PCINT18/INT0) PD2

(PCINT19/OC2B/INT1) PD3

(PCINT20/XCK/T0) PD4

VCC

GND

(PCINT6/XTAL1/TOSC1) PB6

(PCINT7/XTAL2/TOSC2) PB7

(PCINT21/OC0B/T1) PD5

(PCINT22/OC0A/AIN0) PD6

(PCINT23/AIN1) PD7

(PCINT0/CLKO/ICP1) PB0

PC5 (ADC5/SCL/PCINT13)

PC4 (ADC4/SDA/PCINT12)

PC3 (ADC3/PCINT11)

PC2 (ADC2/PCINT10)

PC1 (ADC1/PCINT9)

PC0 (ADC0/PCINT8)

GND

AREF

AVCC

PB5 (SCK/PCINT5)

PB4 (MISO/PCINT4)

PB3 (MOSI/OC2A/PCINT3)

PB2 (SS/OC1B/PCINT2)

PB1 (OC1A/PCINT1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

digital pin 11

digital pin 12

digital pin 10

digital pin 13

Vcc
GND
DIN

CS
CLK

5.5 What we need

A few components are necessary to build up what we described, most of the logic is
implemented via software. More specifically, we need:

• an Arduino Uno compatible board

• a USB printer

• a 4 led matrixes component, equipped with a SPI interface made by the five pins
described in 5.2.2.1

• the source project files, consisting of:

– the avr arduino library source files, header (avr arduino.h) and implementa-
tion (avr arduino.c)

– the SPI emulator header (spi master.h) and implementation (spi master.c)

– the led matrix utilities, header (ledmatrix.h) and implementation (ledmatrix.c)

– the main program module (scoreboard.c)

Here follows the detailed explaination for each source file in this order.

5.6 spi master.h

#ifndef SPI_MASTER

#define SPI_MASTER

#include "avr_arduino.h"

void spi_init(void);

void spi_send(BYTE address,BYTE data);

#endif

38

5.6.1 Inclusions and definitions

After the usual “include guard” preprocessor directives[25], the avr arduino.h header file
is included first, to make use of the bit manipulation functions as well as the most generic
and custom-defined BYTE data type.

5.6.2 Function declarations

void spi init(void);

As its name suggests, it initialises the port pins used by the Arduino to connect to the 4
led matrixes component. A necessary operation, that needs to be executed only once.

void spi send(BYTE address,BYTE data);

It implements the actual SPI data sending algorithm, carefully respecting those specifi-
cations already discussed in section 5.2.2.2. It is called each and every time an 8-bit data
word needs to be written to the 4 matrixes’ device in one of the eight available columns.

5.7 spi master.c

#include "spi_master.h"

void spi_init(void)

{

// PORTB bits direction setup for use as SPI interface

DDRB = port_setup_full(DDRB,IN); // everything in

DDRB = port_setup(DDRB,DDB5,OUT); // SCK out

DDRB = port_setup(DDRB,DDB3,OUT); // MOSI out

DDRB = port_setup(DDRB,DDB2,OUT); // ~SS out

}

void spi_send(BYTE address,BYTE data)

{

BYTE word,bit,high_low;

PORTB = port_setup(PORTB,PB2,LOW); // ~SS = ~CS = active low

// we now send the two address and data words one after the other

// as a 16-bit data packet the MAX7219 can approach correctly

for(word=0;word<2;word++)

{

for(bit=0;bit<8;bit++) // 1 byte = 8 bits

{

// led matrixes packet data format is Big Endian

if(!word) // address word is sent first

{

high_low = address & 0b10000000; // bitwise AND

address <<= 1; // left shift

}

39

else // data word is sent second

{

high_low = data & 0b10000000; // bitwise AND

data <<= 1; // left shift

}

// send the single bit, not a full word if not zero

if(high_low)

PORTB = port_setup(PORTB,PB3,HIGH); // MOSI data output 1

else

PORTB = port_setup(PORTB,PB3,LOW); // MOSI data output 0

// manual SPI clock signal handling

PORTB = port_setup(PORTB,PB5,HIGH); // SCK clock input pin up

PORTB = port_setup(PORTB,PB5,LOW); // SCK clock input pin down

}

}

PORTB = port_setup(PORTB,PB2,HIGH); // ~SS = ~CS = inactive high

}

5.7.1 Inclusions and definitions

The spi master.c program module only includes its respective header file spi master.h,
which already contains every necessary resource to handle. It then follows in defining the
body of the two functions previously declared.

5.7.1.1 spi init() function

void spi_init(void)

{

// PORTB bits direction setup for use as SPI interface

DDRB = port_setup_full(DDRB,IN); // everything in

DDRB = port_setup(DDRB,DDB5,OUT); // SCK out

DDRB = port_setup(DDRB,DDB3,OUT); // MOSI out

DDRB = port_setup(DDRB,DDB2,OUT); // ~SS out

}

5.7.1.1.1 Behaviour The function makes use of the bit manipulation utilities proper
of the avr arduino custom library. PORTB has each of its pins set to input mode (as if
closing them from the outside) and then only the pins 2, 3 and 5 are “opened” to be able
to output our data of interest.

5.7.1.1.2 Chip Select’s negative logic Every setting is applied through the Data
Direction Register of PORTB. Moreover, the bit PORTB2 = DDB2 = ∼SS = ∼CS corre-
sponds to the device’s Chip Select pin, but it works in negative logic (remember that

the ∼ operator is a bitwise NOT), as described in the MAX7219 datasheet[41].

40

5.7.1.2 spi send() function

We are going to analyse its source code by separate sections, so as not to get too confused!

5.7.1.2.1 Variables and initialisation

void spi_send(BYTE address,BYTE data)

{

BYTE word,bit,high_low;

PORTB = port_setup(PORTB,PB2,LOW); // ~SS = ~CS = active low

Three BYTE variables are declared and then used in the following sections, alogside with
the address and data BYTE variables, both of which come as function parameters.

Communication with the slave component is then initialised, by setting the Chip Select
drive bit to LOW, therefore activating the “receptive” mode of the 4 led matrixes input
registers.

5.7.1.2.2 Loop cycles

// we now send the two address and data words one after the other

// as a 16-bit data packet the MAX7219 can approach correctly

for(word=0;word<2;word++)

{

for(bit=0;bit<8;bit++) // 1 byte = 8 bits

{

The word and bit BYTE variables are employed to regulate two for cycles: the outer one
cycles between the address and data 8 bit words and the inner one cycles between the
8 bits of which every word to send is made of.

5.7.1.2.3 Bit discrimination

// led matrixes packet data format is Big Endian

if(!word) // address word is sent first

{

high_low = address & 0b10000000; // bitwise AND

address <<= 1; // left shift

}

else // data word is sent second

{

high_low = data & 0b10000000; // bitwise AND

data <<= 1; // left shift

}

Depending on which of the two iterations the program is, it checks if the MSB of the
address or data word is 0 or 1 through a bitwise AND operation and sets the high low

variable accordingly. Then, the other variable is shifted to the left by one bit, so as to
examine the next MSB on the future iteration of the for cycle.

41

5.7.1.2.4 Address/Data bit output

// send the single bit, not a full word if not zero

if(high_low)

PORTB = port_setup(PORTB,PB3,HIGH); // MOSI data output 1

else

PORTB = port_setup(PORTB,PB3,LOW); // MOSI data output 0

After having calculated if the MSB was 0 or 1, the function makes use of the port setup()

library function, to send the LSB of high low variable to the 4 led matrixes’ device. The
bit is transferred from the Arduino MOSI pin to the slave device’s DIN pin.

5.7.1.2.5 Clock positive edge trigger

// manual SPI clock signal handling

PORTB = port_setup(PORTB,PB5,HIGH); // SCK clock input pin up

PORTB = port_setup(PORTB,PB5,LOW); // SCK clock input pin down

}

}

A clock rising edge has to be provided to the 4 led matrixes’ device, in order to have
the installed MAX7219 decoder-driver to acquire the newly prepared bit of information,
whether it belongs to the address or data words. Then, the clock’s logical level has to
be restored to its original state and the body of both for cycles terminate here.

5.7.1.2.6 Data transfer ending

PORTB = port_setup(PORTB,PB2,HIGH); // ~SS = ~CS = inactive high

}

The last instruction of the spi send() function is to reset the Chip Select signal to an
inactive state (HIGH, because of its negative logic, as specified in section 5.7.1.1.2), to
end the data insertion process and to have the changes automatically applied on the led
matrixes’ panels.

5.8 ledmatrix.h

#ifndef LEDMATRIX

#define LEDMATRIX

#define REG_DECODE 0b00001001

#define REG_BRIGHT 0b00001010

#define REG_SCAN 0b00001011

#define REG_OPERATE 0b00001100

#define REG_TEST 0b00001111

#define LEDS_COL1 0x01

#define LEDS_COL2 0x02

#define LEDS_COL3 0x03

#define LEDS_COL4 0x04

42

#define LEDS_COL5 0x05

#define LEDS_COL6 0x06

#define LEDS_COL7 0x07

#define LEDS_COL8 0x08

#define ALL_LEDS 7

#define OFF 0

#define ON 1

#include "avr_arduino.h"

void ledmatrix_setup(BYTE brightness);

void ledmatrix_operate(BYTE reg_addr,BYTE on_off);

void ledmatrix_zero(BYTE matrix_num);

void ledmatrix_example(BYTE cycles,BYTE matrix_num);

void ledmatrix_random(void);

#endif

5.8.1 Inclusions and definitions

The file starts with the conditional block definition preprocessor directive and continues
by defining a set of useful constants and function prototypes, aimed at building a simple
interface to make a comfortable use of the multi led matrix component we are going to
utilise.

5.8.1.1 REG constants

#define REG_DECODE 0b00001001

#define REG_BRIGHT 0b00001010

#define REG_SCAN 0b00001011

#define REG_OPERATE 0b00001100

#define REG_TEST 0b00001111

These constants are a simple literal representation of the binary numbers identified as the
register addresses for the functionalities described below, all of which being part of the
MAX7219 decoder-driver’s capabilities. Their description and use have been extracted
from the MAX7219 datasheet documentation[41]:

• REG DECODE

decoder register – enables or disables the BCD (Binary Code Decimal) decoding
capability of MAX7219 – we are not going to use that.

• REG BRIGHT

brightness register – sets the brightness level of the matrixes’ leds on a scale that goes
from 1 to 15 (0 would mean leaving the leds off). For most uses, it is recommended
not to go above level 5, so that it results bright enough without hurting the eyes
too much.

43

• REG SCAN

scanner register – it defines how many led columns are allowed to be lit up, according
to their positional index [0. . . 7] – we are setting it to its maximum value.

• REG OPERATE

operational register – also known as the shutdown register, according to the MAX7219
datasheet[41] – it turns on or off the set of led matrixes – we are of course going to
use it in the firmware program.

• REG TEST

test mode register – when enabled, the led matrix ignores its current state register
settings and stays on with every led at full brightness, until a “test off” command
is issued – we use this only at the beginning of our demo program, see later.

5.8.1.2 LEDS constants

#define LEDS_COL1 0x01

#define LEDS_COL2 0x02

#define LEDS_COL3 0x03

#define LEDS_COL4 0x04

#define LEDS_COL5 0x05

#define LEDS_COL6 0x06

#define LEDS_COL7 0x07

#define LEDS_COL8 0x08

These constants are a simple literal representation of the hexadecimal numbers (for the
sake of variety) identified as the register addresses of the eight led columns (or lines, if we
look at the component horizontally) in which the eight bit data word is to be specified to
(de)activate the single leds.

5.8.1.3 Generic constants

#define ALL_LEDS 7

#define OFF 0

#define ON 1

These constants have been defined for a better reading and comprehension of some por-
tions of code, in which we have to enable single leds or send specific commands to the 4
led matrixes’ device.

5.8.2 Function declarations

#include "avr_arduino.h"

void ledmatrix_setup(BYTE brightness);

void ledmatrix_operate(BYTE reg_addr,BYTE on_off);

void ledmatrix_zero(BYTE matrix_num);

void ledmatrix_example(BYTE cycles,BYTE matrix_num);

void ledmatrix_random(void);

44

After having included the avr arduino.h header library file, the ledmatrix.h “interface”
declares five utility functions:

• void ledmatrix setup(BYTE brightness);

dedicated to the initial setup of all the led matrix device’s characteristics described
in section 5.8.1.1. Brightness level is a mandatory parameter.

• void ledmatrix operate(BYTE reg addr,BYTE on off);

generic setup function that can accept any valid setup register belonging to the 4
led matrixes’ device and set any value to it. This function is in fact an spi send()

wrapper, mainly used to send on/off and test instructions to the slave device.

• void ledmatrix zero(BYTE matrix num);

the function is capable of turning off all leds of the specified number of matrixes
passed as a parameter. If there are some more matrixes than specified, they might
not be fully turned off, because of the register shifting mechanism described earlier
in section 5.2.2.5.

• void ledmatrix example(BYTE cycles,BYTE matrix num);

as its name suggests, this example function actually realises the on-screen writing
of the single word “LOVE”, by sending specific activation commands to all of the
eight columns (or lines) of how many led matrixes are specified.

• void ledmatrix random(void);

it creates a random generation of column (line) number and led activation pattern
to be repeatedly sent to the 4 matrixes device, so as to create random led activation
sequences that can clearly show how the data overflow mechanism works.

5.9 ledmatrix.c

#include <stdlib.h>

#include "spi_master.h"

#include "ledmatrix.h"

void ledmatrix_setup(BYTE brightness)

{

// SPI interface initialization

spi_init();

// decode mode = 0 (no BCD decoding)

spi_send(REG_DECODE,OFF);

// intensity (brightness) level = [0...15]

spi_send(REG_BRIGHT,brightness);

// how many columns will light up according to their index [0...7]

spi_send(REG_SCAN,ALL_LEDS);

}

45

void ledmatrix_operate(BYTE reg_addr,BYTE on_off)

{

/*

* display test OR matrixes on/off function.

* the TEST commands stack up onto each

* other and overflow to the next matrixes.

*/

spi_send(reg_addr,on_off);

}

void ledmatrix_zero(BYTE matrix_num)

{

BYTE matrix,led_column;

spi_send(REG_OPERATE,ON);

// we will cycle for the minimum number of times to set everything

// to zero, because of how the matrixes overflow data to each other

for(matrix=1;matrix<=(8+matrix_num-1);matrix++)

for(led_column=LEDS_COL1;led_column<=LEDS_COL8;led_column++)

spi_send(led_column,0b00000000);

spi_send(REG_OPERATE,OFF);

}

// activation of leds to form the word LOVE letter by letter

// it shows how data overflows through the defined number

// of matrixes, thus generalising the function

void ledmatrix_example(BYTE cycles,BYTE matrix_num)

{

BYTE idx,matrix;

for(idx=0;idx<cycles;idx++)

{

// L

spi_send(LEDS_COL1,0xC0);

spi_send(LEDS_COL2,0xC0);

spi_send(LEDS_COL3,0xC0);

spi_send(LEDS_COL4,0xC0);

spi_send(LEDS_COL5,0xC0);

spi_send(LEDS_COL6,0xC0);

spi_send(LEDS_COL7,0xFF);

for(matrix=0;matrix<matrix_num;matrix++)

spi_send(LEDS_COL8,0xFF);

_delay_ms(500);

46

// O

spi_send(LEDS_COL1,0x3C);

spi_send(LEDS_COL2,0x7E);

spi_send(LEDS_COL3,0xE7);

spi_send(LEDS_COL4,0xC3);

spi_send(LEDS_COL5,0xC3);

spi_send(LEDS_COL6,0xE7);

spi_send(LEDS_COL7,0x7E);

for(matrix=0;matrix<matrix_num;matrix++)

spi_send(LEDS_COL8,0x3C);

_delay_ms(500);

// V

spi_send(LEDS_COL1,0b11000011);

spi_send(LEDS_COL2,0b11000011);

spi_send(LEDS_COL3,0b11000011);

spi_send(LEDS_COL4,0b01100110);

spi_send(LEDS_COL5,0b01100110);

spi_send(LEDS_COL6,0b01111110);

spi_send(LEDS_COL7,0b00011000);

for(matrix=0;matrix<matrix_num;matrix++)

spi_send(LEDS_COL8,0b00011000);

_delay_ms(500);

// E

spi_send(LEDS_COL1,0xFF);

spi_send(LEDS_COL2,0xFF);

spi_send(LEDS_COL3,0xC0);

spi_send(LEDS_COL4,0xFF);

spi_send(LEDS_COL5,0xFF);

spi_send(LEDS_COL6,0xC0);

spi_send(LEDS_COL7,0xFF);

for(matrix=0;matrix<matrix_num;matrix++)

spi_send(LEDS_COL8,0xFF);

_delay_ms(500);

}

}

// this function is to be called last

// because of the endless loop within

void ledmatrix_random(void)

{

int led_col,led_num;

47

// random seed generation setting

// 8072 is just a value of preference

srand(8072);

// endless loop

while(1)

{

/*

* random generation of:

* led_col = which column to select

* led_num = which leds to enable in that column

* depending on the binary number

* +1 is to be sure we have at least one active bit

* in our 8-bits word to send, module zero is useless

*/

led_col = rand() % 8 + 1;

led_num = rand() % 256 + 1;

// if generated numbers are in range we send

// the numeric information to the matrixes

if(led_col <= 8 && led_num <= 256)

// only the 8 least significant bits of int

// will be considered and for us it’s fine

spi_send(led_col,led_num);

_delay_ms(500);

}

}

5.9.1 Inclusions and definitions

#include <stdlib.h>

#include "spi_master.h"

#include "ledmatrix.h"

There are only three inclusions inside this ledmatrix.c program module:

1. stdlib.h comes from the standard C library and it is necessary to make use of the
rand() function, for pseudo-random number generation;

2. spi master.h is needed to utilise the initialisation and sending functionalities;

3. ledmatrix.h defines the constants and function prototypes used and defined inside
this very module;

The ledmatrix.c source file continues with its header’s function definitions.

48

5.9.1.1 ledmatrix setup() function

void ledmatrix_setup(BYTE brightness)

{

// SPI interface initialization

spi_init();

// decode mode = 0 (no BCD decoding)

spi_send(REG_DECODE,OFF);

// intensity (brightness) level = [0...15]

spi_send(REG_BRIGHT,brightness);

// how many columns will light up according to their index [0...7]

spi_send(REG_SCAN,ALL_LEDS);

}

5.9.1.1.1 Behaviour The function executes some calls among the SPI functionalities.
It first enables the “emulated” SPI communication pins by calling their initialiser function
and then defines the settings about BCD encoding, led brightness and led column (line)
activation.

Everything is realised by calling the SPI functionalities and using the proper constants
declared in ledmatrix.h, allowing a better understanding of the code.

5.9.1.2 ledmatrix operate() function

void ledmatrix_operate(BYTE reg_addr,BYTE on_off)

{

/*

* display test OR matrixes on/off function.

* the TEST commands stack up onto each

* other and overflow to the next matrixes.

*/

spi_send(reg_addr,on_off);

}

5.9.1.2.1 Behaviour As already described, this function has been created to send
specific commands of power on/off and test on/off to the 4 led matrixes device.

Being in fact just a wrapper function of the spi send() functionality, it is employable
by any user of the ledmatrix interface to forward specific configuration instructions to
the slave device.

5.9.1.2.2 Device-specific functional note The multi-line comment included inside
the function states an interesting fact: the test command, if sent multiple times, overflows
to the next matrix in the line. The power command, instead, does not overflow.

49

5.9.1.3 ledmatrix zero() function

void ledmatrix_zero(BYTE matrix_num)

{

BYTE matrix,led_column;

spi_send(REG_OPERATE,ON);

// we will cycle for the minimum number of times to set everything

// to zero, because of how the matrixes overflow data to each other

for(matrix=1;matrix<=(8+matrix_num-1);matrix++)

for(led_column=LEDS_COL1;led_column<=LEDS_COL8;led_column++)

spi_send(led_column,0b00000000);

spi_send(REG_OPERATE,OFF);

}

5.9.1.3.1 Behaviour In the absence of a proper reset command, this function turns
on the matrix set (to be sure they are so).

Then, for each of the matrixes indicated by the parameter, sends eight BYTE values
equal to zero, one for each column (or line).

Lastly, it turns off the matrixes device, leaving it ready to be used again by another
utility function.

5.9.1.3.2 The influence of data overflow The total matrixes iteration number
specified in the iteration condition of the outer for cycle is altered, to be equal to the
minimum number of iterations that take the data overflow mechanism into account, that
has been specified previously in section 5.2.3.

5.9.1.4 ledmatrix example() function

void ledmatrix_example(BYTE cycles,BYTE matrix_num)

{

BYTE idx,matrix;

for(idx=0;idx<cycles;idx++)

{

...

// V

spi_send(LEDS_COL1,0b11000011);

spi_send(LEDS_COL2,0b11000011);

spi_send(LEDS_COL3,0b11000011);

spi_send(LEDS_COL4,0b01100110);

spi_send(LEDS_COL5,0b01100110);

spi_send(LEDS_COL6,0b01111110);

spi_send(LEDS_COL7,0b00011000);

for(matrix=0;matrix<matrix_num;matrix++)

spi_send(LEDS_COL8,0b00011000);

...

}}

50

5.9.1.4.1 Behaviour The shortened version here depicted of the ledmatrix example()

function shows how every letter of the word “LOVE” is written to the matrixes, one after
the other. Between each letter there is a waiting time of half a second, to have it readable
by the user before changing it again.

The whole “LOVE” word is written, letter by letter, a number of cycles times, that
is what the external for cycle is for. Only the “V” letter is written with binary number
constants, the other three are written with hexadecimal number constants, just for the
sake of variety and simplicity.

5.9.1.4.2 Letter data shifting Each line is assigned a specific BYTE value to visualise
the letter and every spi send() call shifts every line by eight bits, copying their contents
to the next matrix, according to the data overflow mechanism described inside section
5.2.3.

This is why the last line is written matrix num times instead of just one, because the
last line has to fill in all matrixes, allowing the lines before to fill every matrix too.

5.9.1.4.3 The four letters on display Every letter is displayed equally on all of the
matrixes. This is how each of the four letters looks like on a 8x8 led square:

• • ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦
• • ◦ ◦ ◦ ◦ ◦ ◦
• • • • • • • •
• • • • • • • •

L

◦ ◦ • • • • ◦ ◦
◦ • • • • • • ◦
• • • ◦ ◦ • • •
• • ◦ ◦ ◦ ◦ • •
• • ◦ ◦ ◦ ◦ • •
• • • ◦ ◦ • • •
◦ • • • • • • ◦
◦ ◦ • • • • ◦ ◦

O

• • ◦ ◦ ◦ ◦ • •
• • ◦ ◦ ◦ ◦ • •
• • ◦ ◦ ◦ ◦ • •
◦ • • ◦ ◦ • • ◦
◦ • • ◦ ◦ • • ◦
◦ • • • • • • ◦
◦ ◦ ◦ • • ◦ ◦ ◦
◦ ◦ ◦ • • ◦ ◦ ◦

V

• • • • • • • •
• • • • • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦
• • • • • • • •
• • • • • • • •
• • ◦ ◦ ◦ ◦ ◦ ◦
• • • • • • • •
• • • • • • • •

E

5.9.1.5 ledmatrix random() function

void ledmatrix_random(void)

{

int led_col,led_num;

// random seed generation setting

// 8072 is just a value of preference

srand(8072);

// endless loop

while(1)

{

led_col = rand() % 8 + 1;

led_num = rand() % 256 + 1;

if(led_col <= 8 && led_num <= 256)

spi_send(led_col,led_num);

_delay_ms(500);

}

}

51

5.9.1.5.1 Behaviour This function declares two integer values that receive the pseudo-
randomly generated value from the rand() function, properly calibrated by the srand()

(randomizer seed) utility, of which the 8072 is a completely arbitrary value.
led col and led num are generated with a maximum value of 8 and 256 respectively,

but sometimes this might not be true; that is why a simple value check is placed right
afterwards.

Then, the generated value is sent to the generated led column (or line) of the 4
matrixes’ device and the while loop restarts.

5.9.1.5.2 Alphanumeric note A direct correspondence between every letter and its
BYTE values can be found when compiling the numeric binary codes and considering the
MSB on the left and LEDS COL1 as the top line.

5.10 scoreboard.c

#include "ledmatrix.h"

void main(void)

{

ledmatrix_setup(1);

ledmatrix_zero(4);

ledmatrix_operate(REG_OPERATE,ON);

ledmatrix_example(4,4);

ledmatrix_zero(4);

ledmatrix_operate(REG_OPERATE,ON);

ledmatrix_random();

}

5.10.1 Inclusions and definitions

5.10.1.1 main() function

After the ledmatrix.h header file inclusion, the main() function calls the ledmatrix setup()

utility, to begin using the 4 led matrixes’ device connected to the Arduino.
A reset-to-zero operation (of four matrixes) is performed, to clear any previous or

randomly generated activation state; right after that, all of the matrixes are turned on,
ready to accept instructions.

The “LOVE” writing example is executed, realising 4 cycles with 4 matrixes to write
onto; then another reset-to-zero and activation procedure takes place, leading to the
execution of the matrixes’ random-filling functionality.

ledmatrix random() has to be called last, because the inherent loop cycle never exits
nor terminates its execution.

52

Chapter 6

Sonar

The last laboratory experiment we face is a perfect excuse to make use of an LCD
(Liquid Crystal Display) and a ultrasonic distance proximity sensor. Independently of
how intriguing these components may appear, we have to think even more carefully to
what we have and can do with them.

In order to execute the proposed exercise, it is (as always) fundamental to get to know
these two components in detail, by understanding how they work, so as to be able to use
them properly, a factor that especially this time must not be underestimated.

6.1 The 1602A v2.0 16x2 LCD display

6.1.1 How it works

This display comes in various layouts, black digits on a green background or white digits
on a blue background, but for this experiment either of them are fine. They are usually
sold without proper breadboard pins to attach our cables to, but those pins can be welded
up to the component’s board with proper tools.

The LCD is divided in two rows (or lines) of 16 characters, each of them composed
by a small 5x8 dot matrix, the activation of which is handled by the screen’s internal
circuitry. Our very model comes with a SPLC780D controller attached, that defines the
serial communication protocol to use and handles the data to display onto the screen, as
its device datasheet describes[44].

6.1.1.1 Connector pins

If facing the LCD display correctly, by having the connector pins on the top side, it is
possible to notice that they are a total of 16; starting from the leftmost they are the
following:

1. VSS
Display’s main ground line, to be connected to GND.

2. VDD
Display’s main power source, its datasheet suggests to have it between 4.5 V and
5.5 V, so the 5 V Arduino plug is fine.

53

3. V0
Differential voltage supply, connectible to a potentiometer (variable resistor), in
order to adjust the leds’ display contrast on the screen; in our implementation it
has been connected to GND for maximum output contrast.

4. RS
Register Select pin;
RS = 0 : data is considered to be a protocol-specific command.
RS = 1 : data is an ASCII-compatible[45] character code to display on screen.

5. RW
Read (RW = 1) or Write (RW = 0) pin; we just need to write to the device, so it
is going to be connected to GND.

6. E
Enable pin;
Information sent through the eight data lines is acquired, stored and displayed by
the LCD device’s controller only on the falling edge of signal E.

7. D0 . . . D7
Data transmission lines. If it is a device’s command or a character symbol, it can
be distinguished by the RS signal’s activation state.

8. A
Anode input current for the backlight led illumination circuit. An external pull-up
resistor (from 110 Ω impedence level onwards) and a 3.3 V or 5 V power source are
required to properly turn the backlight on during operational time.

9. K
Cathode output current for the backlight led illumination circuit; it must be always
connected to GND.

6.2 The HC-SR04 ultrasonic distance sensor

6.2.1 How it works

The ultrasonic sensor is composed of two rounded speaker-like blocks, a transmitter T
and a receiver R, as it is possible to see printed on the board itself. The circuitry installed
on the sensor serves to redirect signals to and from the ultrasonic speakers.

The T block is capable of generating a short high frequency signal that, being reflected
onto objects, is then received by the R block and lasts for a time period that is directly
proportional to the distance the same pulse has just travelled.

6.2.1.1 Pulse format

More specifically, once the device is triggered by a HIGH logical level signal, which is sent
on the Trigger pin and lasting at least 10 µs, the ultrasonic sensor emits a 8 square wave
oscillation burst, at a frequency of about 40 kHz (a period of 25 µs)[46].

Right after that, the device raises its Echo signal and keeps it on HIGH until it senses
the same ultrasonic pulse bouncing back from the object to which it was aimed at. That

54

specific amount of time has to be measured and taken into consideration to calculate the
distance travelled by the ultrasonic pulse, as explained later.

6.2.1.2 Connector pins

This sonar sensor device presents just 4 pins, some of which have already been indirectly
described in the prevoius paragraph:

• Vcc
Power tension; 5V is the recommended input voltage for the device.

• Trigger
A short logical level HIGH signal causes the emission of the 8 cycle 40 kHz pulses.

• Echo
Signal pin that stays on logical level HIGH until the ultrasonic impulse is received
back.

• GND
The ground power terminal.

6.2.2 The speed of sound within the Arduino Uno

6.2.2.1 From meters to millimeters

Scientifically, the velocity in which sound waves can travel through air is strongly depen-
dent on temperature. At 20◦C the speed of sound is about 343 m/s (meters per second),
but on the datasheet they say 340 m/s, to simplify and obtain an average value.

According to the HC-SR04 datasheet[46], minimum measurable distance is about 20
millimeters and maximum distance is around 4 meters. If we consider:

vs = 343 m/s = 343 · 103 mm/s

⇓

1 mm in
1

343 · 103
s = 1 mm in 3µs

⇓
20 mm in 3µs · 20 = 60µs

It takes 60 µs to travel 20 mm through air in ordinary conditions. So our counter
needs to be able to count in microseconds (µs), to be as precise as possible. It turns out
we are already very well equipped for this task.

6.2.2.2 ATmega’s counter recalibration

The ATmega 328P microprocessor mounted on the Arduino Uno we use is capable of
running at a maximum clock frequency of 16 MHz[20], which is 16 times faster than
the 1 MHz clock speed we need. Moreover, each firmware we use that comes from this
very report is always explicitly compiled for the ATmega 328P at a clock speed of 16
MHz. That is the definitive reason why we need to adjust the coefficient suggested by the
ultrasonic sensor’s datasheet.

55

Instead of the 58 µs value, we can have it rounded to 60 µs and multiply that by
16. This gives us a final value of 960 µs, which will divide the actual value counted
by the ATmega microprocessor. Practical explanation of this aspect will be given when
examining the project’s source code.

6.3 What we are going to do

After having talked about what is necessary to know and understand as a prerequisite, in
this last experiment we are going to realise what may seem obvious to think about, but
not as much as actually doing it.

In practical terms, we are simply going to write on the LCD display the millimetric
distance measured by the ultrasonic sensor. Its value will be updated in real time, because
the sensor’s activation is going to be continuously triggered.

6.4 Schematic

56

6.4.1 Relevant notes

Each component is connected exactly as explained during their individual analysis. As
already mentioned, the LCD’s backlight input current is reduced by a 220 Ω resistor; the
ultrasonic sensor’s operative current is around 15 mA, so the 20 mA coming out of the
digital and 5 V power pins is suitable, as already discussed in section 4.4.1.

6.5 What we need

Let us regroup and make a list of what we actually need to finally be able to build up
this deeply intriguing experiment:

• an Arduino Uno compatible board

• a USB printer cable

• a middle-sized (or larger) breadboard

• at least 24 breadboard connecting cables

• an LCD 1602A 16x2 display, no matter the colour

• a 110 Ω (or above) resistor

• an HC-SR04 ultrasonic sensor

• the project source files, including:

– the avr arduino library source files, header (avr arduino.h) and implementa-
tion (avr arduino.c)

– the LCD display dedicated header (lcd.h) and program module (lcd.c)

– the ultrasonic sensor dedicated header (sensor.h) and program module (sensor.c)

– the main program module (sonar.c)

6.6 lcd.h

#ifndef LCD_DISPLAY

#define LCD_DISPLAY

#include "avr_arduino.h"

// internal instruction specification flags

#define CMD 0

#define DAT 1

// commands taken from the SPLC780D controller datasheet

#define LCD_ON 0b00001100

#define LCD_OFF 0b00001000

57

#define LCD_FUNCTION 0b00111000

#define LCD_RESET 0b00110000

#define LCD_ENTRY 0b00000110

#define LCD_CLEAR 0b00000001

#define LCD_LINE1 0b10000000

#define LCD_LINE2 0b11000000

// public led display utility function declarations

void lcd_ports(void);

void lcd_setup(void);

void lcd_string(BYTE string[]);

void lcd_line(BYTE line_number);

#endif

6.6.1 Inclusions and definitions

The avr arduino.h header file is included as a first thing, then two aliases of 0 (CMD) and
1 (DAT) are defined, because they have something to do with the ability to distinguish
between command data and display data that is sent to the LCD, as we are about to see.

Those constants are followed by another series of binary constants, which represent
the useful command data we need to send to our LCD in order to use it properly. As
the code comment says, they have been directly extracted from the 1602A’s controller
datasheet, the SPLC780D circuit[44]. A few words on the less obvious:

• LCD FUNCTION regulates the data transmission format, how many lines can be used
among the ones available and the character font, of resolution 5x8 or 5x10 pixels
(the latter would force the single-line mode because of space issues).

• LCD RESET is a special command word to be issued only during the screen’s initial-
isation procedure (explained later).

• LCD ENTRY defines whether the display gets written from left to right or vice versa
and if it shifts when data goes beyond the first 16 characters, because each line can
hold up to 80 symbols to memory.

• LCD LINEx places the writing cursor to the beginning of line number x.

6.6.2 Function declarations

Please note that in the header file have been listed only those functions that appear useful
to other program modules. There are some other function definitions, which appear only
inside the lcd.c module, that are going to be explained in the next section.

• void lcd ports(void);

Dedicated to apply the correct port bit direction settings on the Arduino.

• void lcd setup(void);

The proper LCD’s initialisation procedure, to be executed right after power on.

58

• void lcd string(BYTE string[]);

Function capable of sending a string of characters BYTE = unsigned char to be
written to the LCD.

• void lcd line(BYTE line number);

Line-changer function, it also resets the cursor’s position to the first symbol on the
selected line.

6.7 lcd.c

#include "lcd.h"

// data and control bit port setup function

void lcd_ports(void)

{

// eight PORTD data lines out

DDRD = port_setup(DDRD,DDD7,OUT);

DDRD = port_setup(DDRD,DDD6,OUT);

DDRD = port_setup(DDRD,DDD5,OUT);

DDRD = port_setup(DDRD,DDD4,OUT);

DDRD = port_setup(DDRD,DDD3,OUT);

DDRD = port_setup(DDRD,DDD2,OUT);

DDRD = port_setup(DDRD,DDD1,OUT);

DDRD = port_setup(DDRD,DDD0,OUT);

DDRB = port_setup(DDRB,DDD1,OUT); // E = Enable

DDRB = port_setup(DDRB,DDD0,OUT); // RS = Register Select

}

// data bits value reassignment procedure

void lcd_data(BYTE info)

{

BYTE bit;

// eight PORTD data lines reset

bit = port_bit(info,PORTD7);

PORTD = port_setup(PORTD,PORTD7,bit);

bit = port_bit(info,PORTD6);

PORTD = port_setup(PORTD,PORTD6,bit);

bit = port_bit(info,PORTD5);

PORTD = port_setup(PORTD,PORTD5,bit);

bit = port_bit(info,PORTD4);

PORTD = port_setup(PORTD,PORTD4,bit);

bit = port_bit(info,PORTD3);

PORTD = port_setup(PORTD,PORTD3,bit);

bit = port_bit(info,PORTD2);

PORTD = port_setup(PORTD,PORTD2,bit);

bit = port_bit(info,PORTD1);

59

PORTD = port_setup(PORTD,PORTD1,bit);

bit = port_bit(info,PORTD0);

PORTD = port_setup(PORTD,PORTD0,bit);

}

// data or command write instruction sequence

void lcd_write(BYTE info,BYTE is_data)

{

// proper setup of signal RS

PORTB = port_setup(PORTB,PORTB0,is_data);

// reset of signal E

PORTB = port_setup(PORTB,PORTB1,LOW);

// info assignment to data output port D

lcd_data(info);

// falling edge of signal E

PORTB = port_setup(PORTB,PORTB1,HIGH);

_delay_us(1);

PORTB = port_setup(PORTB,PORTB1,LOW);

_delay_us(1);

}

// lcd display initial setup procedure

void lcd_setup(void)

{

// power-up delay

_delay_ms(100);

// three reset command cycle

// with dedicated delay times

lcd_write(LCD_RESET,CMD);

_delay_ms(10);

lcd_write(LCD_RESET,CMD);

_delay_us(200);

lcd_write(LCD_RESET,CMD);

_delay_us(200);

// mode, lines and font setup

lcd_write(LCD_FUNCTION,CMD);

_delay_us(80);

// display off command

lcd_write(LCD_OFF,CMD);

_delay_us(80);

60

// display clear directive

lcd_write(LCD_CLEAR,CMD);

_delay_ms(4);

// display shifting mode setup

lcd_write(LCD_ENTRY,CMD);

_delay_us(80);

// display on command

lcd_write(LCD_ON,CMD);

_delay_us(80);

}

// writes a well-formed string on the lcd display

void lcd_string(BYTE string[])

{

BYTE i = 0;

for(i=0;string[i]!=0;i++)

{

lcd_write(string[i],DAT);

_delay_us(80);

}

}

// changes the line in which to write

// 1 = first line | 2 = second line

void lcd_line(BYTE line_number)

{

if(line_number == 2)

lcd_write(LCD_LINE2,CMD);

else

lcd_write(LCD_LINE1,CMD);

_delay_us(80);

}

6.7.1 Inclusions and definitions

The lcd.c program module includes its respective header file lcd.h and defines all of the
already mentioned functions, plus some other ones, available for internal use only.

6.7.1.1 The firmware programmer’s extensive note

When developing the functions that follow, the LCD 1602A and SPLC780D controller
datasheet[44] has been heavily used to learn about what to do and to translate it into
code. During this process, a series of unexpected incompatibilities arose, even though the
display was well known and handled inside more common Arduino projects.

The SPLC780D controller’s main reference document has proved itself to be incomplete
and lacking in detail. Furthermore, a thorough research on the Internet solved the issue,

61

by illustrating the proper instruction sequence and timing[47], which were just partially
drafted on the main reference document.

For these reasons, all functions contained in the lcd.c program module do not make
use of for or while cycles when changing the single port pins’ status with the port setup()

functionality, while the port setup full() capability has not been used at all. Too
much rapid and sudden pin value changes are of nothing but disturbance to the LCD’s
SPLC780D controller and that has been verified mainly through experimental trial.

6.7.1.2 lcd ports() function

void lcd_ports(void)

{

// eight PORTD data lines out

DDRD = port_setup(DDRD,DDD7,OUT);

DDRD = port_setup(DDRD,DDD6,OUT);

DDRD = port_setup(DDRD,DDD5,OUT);

DDRD = port_setup(DDRD,DDD4,OUT);

DDRD = port_setup(DDRD,DDD3,OUT);

DDRD = port_setup(DDRD,DDD2,OUT);

DDRD = port_setup(DDRD,DDD1,OUT);

DDRD = port_setup(DDRD,DDD0,OUT);

DDRB = port_setup(DDRB,DDD1,OUT); // E = Enable

DDRB = port_setup(DDRB,DDD0,OUT); // RS = Register Select

}

6.7.1.2.1 Behaviour This function employs the port setup() functionality to se-
quentially activate all bits of PORTD and the first couple bits of PORTB in output mode.
They are all done from the MSB to the LSB, but this order is not mandatory. Note the
Enable and Register Select signals, while the Read/Write signal is not present, because
it gets statically connected to GND.

6.7.1.3 lcd data() function

void lcd_data(BYTE info)

{

BYTE bit;

// eight PORTD data lines reset

bit = port_bit(info,PORTD7);

PORTD = port_setup(PORTD,PORTD7,bit);

bit = port_bit(info,PORTD6);

PORTD = port_setup(PORTD,PORTD6,bit);

bit = port_bit(info,PORTD5);

PORTD = port_setup(PORTD,PORTD5,bit);

bit = port_bit(info,PORTD4);

PORTD = port_setup(PORTD,PORTD4,bit);

bit = port_bit(info,PORTD3);

PORTD = port_setup(PORTD,PORTD3,bit);

62

bit = port_bit(info,PORTD2);

PORTD = port_setup(PORTD,PORTD2,bit);

bit = port_bit(info,PORTD1);

PORTD = port_setup(PORTD,PORTD1,bit);

bit = port_bit(info,PORTD0);

PORTD = port_setup(PORTD,PORTD0,bit);

}

6.7.1.3.1 Behaviour Similarly to the previous one, this function makes use of the
port setup() feature to sequentially assign a new value to PORTD one bit at a time. The
BYTE variable bit is declared to temporarily host the extracted bit value from the 8 bit
word info.

6.7.1.3.2 Visibility This function is the first among those which are available for
internal program module use only and separates the actual process of data assignment
from the writing procedure that follows.

6.7.1.4 lcd write() function

void lcd_write(BYTE info,BYTE is_data)

{

// proper setup of signal RS

PORTB = port_setup(PORTB,PORTB0,is_data);

// reset of signal E

PORTB = port_setup(PORTB,PORTB1,LOW);

// info assignment to data output port D

lcd_data(info);

// falling edge of signal E

PORTB = port_setup(PORTB,PORTB1,HIGH);

_delay_us(1);

PORTB = port_setup(PORTB,PORTB1,LOW);

_delay_us(1);

}

6.7.1.4.1 Behaviour In order to properly write information to the LCD, the function
configures the RS signal depending on the type of information identified by the caller and
the E signal, to be at logical level LOW.

Right after that, it calls the lcd data() function shown earlier to setup the 8-bit bus
data (represented by PORTD). Lastly, it generates a rising and a falling edge of the E signal,
which is the actual latch command that allows the LCD’s controller to acquire and store
the 8-bit word of PORTD into memory.

There is a one microsecond delay between the rising and the falling edge of signal E,
so the SPLC780D controller can receive the descending front with the right timing.

63

6.7.1.4.2 Visibility This is the second function for internal use only, because it is
called only by those functions which need to write some information to the LCD and
specify if it is all about command data or symbol data.

6.7.1.5 lcd setup() function

The LCD setup procedure always needs to be called right after the PORTx direction
setting, so as to properly initialise the LCD for data output.

The different steps in which it has been subdivided are described inside the SPLC780D
controller datasheet[44] and have been transcripted into code following those indications.
Everything stated in the programmer’s extensive note (section 6.7.1.1) also applies here.

Inside this function, there are multiple calls to the lcd write() procedure with the
proper command to send and the CMD parameter, specifying to the LCD’s controller that
the incoming data has to be treated as a directive and not as a symbol to be displayed.

6.7.1.5.1 Power-up delay

void lcd_setup(void)

{

// power-up delay

_delay_ms(100);

...

Right at the start there is a delay construct that suspends program execution for about
100 milliseconds, the time needed to the LCD’s controller to properly configure its internal
logic.

6.7.1.5.2 Device reset procedure

...

// three reset command cycle

// with dedicated delay times

lcd_write(LCD_RESET,CMD);

_delay_ms(10);

lcd_write(LCD_RESET,CMD);

_delay_us(200);

lcd_write(LCD_RESET,CMD);

_delay_us(200);

// mode, lines and font setup

lcd_write(LCD_FUNCTION,CMD);

_delay_us(80);

...

The execution continues by sending the LCD RESET command to the LCD for three times,
by waiting 10 milliseconds the first time and 200 microseconds the second and third time.
Then, the LCD FUNCTION instruction is sent to the LCD, setting up its main operation
mode and this time a 80 microseconds delay is applied.

64

6.7.1.5.3 Final touches

...

// display off command

lcd_write(LCD_OFF,CMD);

_delay_us(80);

// display clear directive

lcd_write(LCD_CLEAR,CMD);

_delay_ms(4);

// display shifting mode setup

lcd_write(LCD_ENTRY,CMD);

_delay_us(80);

// display on command

lcd_write(LCD_ON,CMD);

_delay_us(80);

}

The function ends by turning off and on the LCD itself; in the middle of the power
commands, the display is cleared from previous or incorrect data and the proper display
shifting mode is selected.

In our very case, the display does not show its character cursor and does not shift
when text overflows the sixteenth character on a line.

6.7.1.6 Note on lcd write() calling

From now on, all calls to the function lcd write() require a subsequent time delay of
at least 40 microseconds, because of the inherent design of the SPLC780D controller[44]

(with the exception of the LCD CLEAR command, which takes more time for the LCD’s
controller logic to complete).

As a safe choice, the minimum waiting time has been doubled and needs to be applied
each time the execution returns from the lcd write() call.

6.7.1.7 lcd string() function

void lcd_string(BYTE string[])

{

BYTE i = 0;

for(i=0;string[i]!=0;i++)

{

lcd_write(string[i],DAT);

_delay_us(80);

}

}

6.7.1.7.1 Behaviour The function accepts a well-formed string of (BYTE), so an
unsigned char array that holds a null (‘\0’) character at the end.

65

It cycles through the parameter string and sends one BYTE at a time to the LCD by
calling the lcd write() function, specifying that in this case we are sending display data
(DAT) and not a controller’s command (CMD).

6.7.1.8 lcd line() function

void lcd_line(BYTE line_number)

{

if(line_number == 2)

lcd_write(LCD_LINE2,CMD);

else

lcd_write(LCD_LINE1,CMD);

_delay_us(80);

}

6.7.1.8.1 Behaviour This function accepts a BYTE parameter, considered to be nu-
merical, which is used to choose to which LCD line the writing cursor has to be reset,
enabling the screen’s controller to write something new, by starting from the first symbol
on the selected line.

6.8 sensor.h

#ifndef SONIC_SENSOR

#define SONIC_SENSOR

#include <stdint.h>

#include <stdio.h>

#include "avr_arduino.h"

// volatile unsigned integer variables

// to host temporary numeric results

volatile uint16_t distance_mm,echo,pulse_time;

// function declarations

void sensor_ports(void);

void sensor_setup(void);

void sensor_trigger(void);

#endif

66

6.8.1 Inclusions and definitions

The sensor header file contains the usual definition directives and then includes three
header files:

• stdint.h for the availability of the uint16 t data type, defined as unsigned int.

• stdio.h to make use of the snprintf() function (used inside the main() function,
see later).

• avr arduino.h our well-known custom library that offers the port functions’ family.

Before the functions declaration section, three volatile variables are declared:

• distance mm is going to host the final millimetric distance value recorded by the
ultrasonic sensor.

• echo is representative of the Echo signal’s current value and serves to understand
in which measure phase we find ourselves in during the program’s execution.

• pulse time is indicative of the cycles that the ATmega’s internal counter has
recorded while waiting for the Echo signal to change its state (that is how time
gets measured with sufficient precision, see later).

Lastly, we have another triple of function declaration directives:

• void sensor ports(void);

Enables up the proper Trigger and Echo bits on PORTB.

• void sensor setup(void);

Sets up the interrupt condition on the Echo bit of PORTB and enables all hardware
interrupts.

• void sensor trigger(void);

Causes the Trigger bit of PORTB to go at logical level HIGH for at least 10 microsec-
onds and to return in LOW state afterwards.

6.8.1.1 volatile variables

Those are variables that, independently by the scope in which they are collocated, can
be subjected to an “unexpected” value change, caused by a program execution flow that
is external to the one identified with the main() function and its secondary procedure
calls[33].

The perfect example for this kind of situation is the interrupt handler function, which
is never called by the regular program, but directly by the hardware microprocessor when
the corresponding interrupt signal condition is met. We are going to make use of all this.

67

6.9 sensor.c

#include "sensor.h"

// echo and trigger PORTB pins direction setup function

void sensor_ports(void)

{

// PORTB sensor dedicated bits

DDRB = port_setup(DDRB,DDB3,IN); // echo in

DDRB = port_setup(DDRB,DDB2,OUT); // trigger out

}

// ultrasonic sensor bit interrupt setup function

void sensor_setup(void)

{

// echo signal state indicator

echo = 0;

// disable all interrupts

cli();

// Pin Change Interrupt Control Register, where PCIE0 refers to PORTB

PCICR = port_setup(PCICR,PCIE0,HIGH);

// Pin Change MaSK of PORTB, that enables catching of bit-specific interrupts

PCMSK0 = port_setup(PCMSK0,PCINT3,HIGH);

// enable all interrupts

sei();

}

// utility ultrasonic trigger signal emission function

void sensor_trigger(void)

{

// trigger signal assignment

PORTB = port_setup(PORTB,PORTB2,HIGH);

_delay_us(20); // microseconds’s waiting time (at least 10 is needed)

PORTB = port_setup(PORTB,PORTB2,LOW);

}

// Interrupt Service Routine for this sensor

// operating on the PORTB interrupt vector

ISR(PCINT0_vect)

{

// if echo signal is HIGH

if(echo)

{

// TC1 counter deactivation

TCCR1B = port_setup_full(TCCR1B,LOW);

// pulse time value assignment

pulse_time = TCNT1;

68

// TC1 internal value reset

TCNT1 = port_setup_full(TCNT1,LOW);

// echo signal state indicator toggle

echo = 0;

// distance in mm from pulse time calculus

distance_mm = pulse_time / 960;

}

// else if echo signal is LOW

else

{

// TC1 counter activation

// TCCR1B = Timer Counter 1 Control Register B

// CS10 = clock source selector (no prescaling)

TCCR1B = port_setup(TCCR1B,CS10,HIGH);

// echo signal state indicator toggle

echo = 1;

}

}

6.9.1 Inclusions and definitions

The sensor.c program module starts with the inclusion of its own header file. It then pro-
ceeds in defining all of the header-declared functions plus the interrupt handler necessary
to the counting process.

6.9.1.1 sensor ports() function

void sensor_ports(void)

{

// PORTB sensor dedicated bits

DDRB = port_setup(DDRB,DDB3,IN); // echo in

DDRB = port_setup(DDRB,DDB2,OUT); // trigger out

}

6.9.1.1.1 Behaviour This function simply enables the Echo input and Trigger out-
put signals on the Arduino/ATmega 328P’s PORTB, by making use of the port setup()

function.

6.9.1.2 sensor setup() function

void sensor_setup(void)

{

// echo signal state indicator

echo = 0;

// disable all interrupts

cli();

// Pin Change Interrupt Control Register, where PCIE0 refers to PORTB

PCICR = port_setup(PCICR,PCIE0,HIGH);

69

// Pin Change MaSK of PORTB, that enables catching of bit-specific interrupts

PCMSK0 = port_setup(PCMSK0,PCINT3,HIGH);

// enable all interrupts

sei();

}

6.9.1.2.1 Behaviour The sensor setup() function is fully dedicated to establish an
interrupt trigger onto the Echo bit of PORTB with the help of five instructions:

1. the echo reference variable gets initialised to zero, because the sensor has not been
triggered yet; instead of catching the actual value and generate another nested
interrupt, a local value reference is still suitable for this purpose.

2. every interrupt is disabled by the cli() (clear interrupt) instruction.

3. the Pin Change Interrupt Control Register (PCICR for short) value is altered by
putting to logical level HIGH the bit in the PCIE0 position, which guarantees the
PORTB’s interrupt vector trigger.

4. the Pin Change Mask of PORTB (PCMSK0) value is altered by setting to logical level
HIGH the bit in the PCINT3 position, that corresponds to the fourth bit of PORTB,
the one to which the Echo signal is mapped on.

5. every interrupt is re-enabled by the sei() (set interrupt) instruction.

In this way, an interrupt signal is generated each time the Echo signal changes its logical
level, from LOW to HIGH or from HIGH to LOW.

6.9.1.3 sensor trigger() function

void sensor_trigger(void)

{

// trigger signal assignment

PORTB = port_setup(PORTB,PORTB2,HIGH);

_delay_us(20); // microseconds waiting time (at least 10 is needed)

PORTB = port_setup(PORTB,PORTB2,LOW);

}

6.9.1.3.1 Behaviour The function is called each time the firmware code wants to
trigger the ultrasonic sensor’s activation. It makes use of the port setup() function to
shift the Trigger pin of PORTB to logical value HIGH and then resetting it again to LOW
after 20 microseconds. By doing so, the function fully accomplishes the correct trigger
procedure as described in the ultrasonic sensor’s datasheet (where it is written that the
trigger time should be at least 10 microseconds long)[46].

70

6.9.1.4 ISR(PCINT0 vect) interrupt handler

ISR(PCINT0_vect)

{

// if echo signal is HIGH

if(echo)

{

// TC1 counter deactivation

TCCR1B = port_setup_full(TCCR1B,LOW);

// pulse time value assignment

pulse_time = TCNT1;

// TC1 internal value reset

TCNT1 = port_setup_full(TCNT1,LOW);

// echo signal state indicator toggle

echo = 0;

// distance in mm from pulse time calculus

distance_mm = pulse_time / 960;

}

// else if echo signal is LOW

else

{

// TC1 counter activation

// TCCR1B = Timer Counter 1 Control Register B

// CS10 = clock source selector (no prescaling)

TCCR1B = port_setup(TCCR1B,CS10,HIGH);

// echo signal state indicator toggle

echo = 1;

}

}

ISR(vector) is in fact an AVR library C language macro, hiding a series of directives
and a generic function pointer, all of which is not going to be discussed.

6.9.1.4.1 Behaviour This interrupt handler is called due to the interrupt setting
realised inside the sensor setup() function; each time the sensor’s Echo signal changes
its logical level state, this interrupt procedure distinguishes two cases of operation:

1. if the echo reference signal’s variable is HIGH (or likewise, different from zero):

• the ATmega microprocessor’s internal counter is deactivated by assigning all
bits of TCCR1B (Timer Counter 1 Control Register B) to zero

• the pulse time integer variable is assigned the value contained in TCNT1 (Timer
Counter 1) register so as to temporarily store it for processing

• the value contained in TCNT1 (Timer Counter 1) register is reset to zero, along
with the echo variable’s value

• the millimetric distance is calculated by dividing the pulse time value for the
960 coefficient, which has been thoroughly explained in section 6.2.2.2

71

2. if the echo reference signal’s variable is LOW (or likewise, equal to zero):

• the ATmega microprocessor’s internal Timer Counter 1 is activated, by setting
the CS10 (Clock Select) bit of TCCR1B (Timer Counter 1 Control Register B) to
logical level HIGH; this enables the background counting process by selecting
the internal clock source with no prescaling applied (timer frequency is equal
to clock frequency)

• the echo variable’s value is set to one, because the Echo signal has just arrived
and is now expected to end “soon”

6.10 sonar.c

#include "lcd.h"

#include "sensor.h"

#define DIGITS 8

void main(void)

{

// preallocation of the numeric distance’s string equivalent

BYTE distance_string[DIGITS];

// LCD display initialisation

lcd_ports();

lcd_setup();

lcd_string("- Sonic Sensor -");

// ultrasonic sensor initialisation

sensor_ports();

sensor_setup();

// endless execution loop

while(1)

{

sensor_trigger();

// LCD display second line selection

lcd_line(2);

// conversion and writing of the measured distance

lcd_string("dist: ");

snprintf(distance_string,DIGITS,"%d",distance_mm);

lcd_string(distance_string);

// trailing whitespace is to prevent character overlapping

lcd_string(" mm ");

}

}

72

6.10.1 Inclusions and definitions

On the main program module, both lcd.h and sensor.h header files are included; it also
appears the definition of the DIGITS constant, made simply to ease the repeated writing
of how many bytes at maximum have to be allocated for the distance string that will
hold the stringified version of the distance mm integer value.

6.10.1.1 main() function

The main() function’s behaviour is plain and simple. It calls the ports and setup

functions of both the LCD (first) and the ultrasonic sensor (second). It then enters the
while(1) endless execution loop, where it cyclically triggers the ultrasonic sensor and
fully rewrites the second line of the LCD.

The snprintf() function acquires the distance mm integer value and converts it into
a well-formed string, ready to be sent to the display by the lcd string() functionality.
The second line terminates with a series of seemengly useless spaces, which are instead
very useful to overlap and delete those characters that might not be rewritten on the line
in the case of a distance string composed by less than four digits.

73

Chapter 7

Conclusions

The three practical experiments with Arduino we just envisioned gave us a pretty good
insight on what is definitely possible doing with such a flexible development platform.
Arduino has spread so much among passionate electronics tinkerers because it is relatively
easy to use, but people often employ this board’s capacities only to make what they
are truly interested in, whereas this thesis tried to furnish proof on how the underlying
hardware is designed and actually functions.

7.1 Arduino, but without its IDE

Anyone approaching the Arduino board for the first time is invited to program it by using
its official Integrated Development Environment (IDE), made available by the platform’s
creators. This programming methodology allows a very comfortable use of the machine
and detaches the user little enough from the hardware level so as to render their experience
enjoyable, or in some cases even fun.

Our interests diverged from this very welcoming approach. With the Arduino IDE it
is not possible to actually learn how the hardware components work, all you can do is
just to use them. Our manual programming method and command line usage is not very
popular, because it is slower, more difficult to understand and organise, but it nonetheless
allowed us to build functioning projects from the very ground up.

7.2 The AVR Arduino library’s purpose

Starting from the barebone AVR programming library, it has been possible to “touch” the
machine and understand how it actually worked, removing the usual abstraction layers
and allowing us to handle pure byte data and binary constants.

The avr arduino library had been created before the experiments to ease code writing
a bit in its form, to basically handle bitwise operations by confining them to a proper
space where they could be understood better. In the end, this created a useful set of
functions, which can always be expanded depending on the programmer’s necessities.

74

7.3 The three experiments

What kind of experience have we gained from the three laboratory exercises demonstrated
in this thesis?

The Assembler experiment brought us in direct contact with the Arduino machine
and the ATmega 328P microprocessor installed on it and taught us how to realise detailed
functionalities by acting directly on the internal ATmega’s registers.

The Scoreboard experiment did not involve an actual scoreboard, but allowed us to
get familiar with the SPI data communication method, to be used towards an hardware
controller. A more complex approach than just turning on and off some leds, because of
the necessity to respect a proper data transmission protocol.

The Sonar experiment, possibly the “coolest” of all three, put together the theorical
and hardware notions of the first two projects and, before allowing us to accomplish the
main objective of distance measuring, it forced us from the start to build a dedicated
communication protocol for both the LCD and the ultrasonic sensor.

7.4 An open-sourced thesis

Everything that has been used or employed inside this thesis had an open source nature.
Arduino is an open hardware platform and all of the other hardware components employed
are freely purchasable on the global market for a fair price.

All of the software tools used to build up this thesis are open source too: the Ubuntu op-
erating system, the Linux kernel, the avr-libc software distribution, the LATEXenvironment
(tex-live) and document editing software (gummi), plus the firmware program examples
that have been consulted for inspiration and technical adjustments.

The thesis itself is free for publication, redistribution and modification, while citing
the original author and the relevant sources is always much appreciated.

75

Bibliography

[1] ATmega328P microprocessor, Device Overview, Microchip, https://www.

microchip.com/wwwproducts/en/ATmega328p

[2] Atmel Corporation, Atmel, Wikipedia, https://en.wikipedia.org/wiki/Atmel

[3] RISC architecture, Reduced Instruction Set Computer, Wikipedia,
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer

[4] Arduino Official Guide, Getting Started with Arduino and Genuino UNO, last revision
2017/01/12 by SM, arduino.cc, https://www.arduino.cc/en/Guide/ArduinoUno

[5] Assembly language definitions, Assembly language, Wikipedia,
https://en.wikipedia.org/wiki/Assembly_language

[6] LED, Light-emitting diode, Wikipedia, https://en.wikipedia.org/wiki/

Light-emitting_diode

[7] Interrupt signal, Interrupt definition, TechTerms, https://techterms.com/

definition/interrupt

[8] C programming language, C Programming/Why learn C?, C programming Wikibook,
https://en.wikibooks.org/wiki/C_Programming/Why_learn_C%3F

[9] Arduino Official Guide, Installing Additional Arduino Libraries, last revision
2017/02/07 by SM, arduino.cc, https://www.arduino.cc/en/Guide/Libraries

[10] AVR development environment, AVR Libc Home Page, Savannah software forge,
https://www.nongnu.org/avr-libc/

[11] C standard library, C Programming/Standard libraries, C programming Wikibook,
https://en.wikibooks.org/wiki/C_Programming/Standard_libraries

[12] AVR Libc Modules, AVR Libc User Manual, https://www.nongnu.org/avr-libc/
user-manual/modules.html

[13] Ubuntu, The leading operating system for PCs, IoT devices, servers and the cloud,
https://www.ubuntu.com/

[14] Debian, The universal operating system, https://www.debian.org/

[15] Terminal, Terminal definition, TechTerms, https://techterms.com/definition/
terminal

76

https://www.microchip.com/wwwproducts/en/ATmega328p
https://www.microchip.com/wwwproducts/en/ATmega328p
https://en.wikipedia.org/wiki/Atmel
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://www.arduino.cc/en/Guide/ArduinoUno
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Light-emitting_diode
https://en.wikipedia.org/wiki/Light-emitting_diode
https://techterms.com/definition/interrupt
https://techterms.com/definition/interrupt
https://en.wikibooks.org/wiki/C_Programming/Why_learn_C%3F
https://www.arduino.cc/en/Guide/Libraries
https://www.nongnu.org/avr-libc/
https://en.wikibooks.org/wiki/C_Programming/Standard_libraries
https://www.nongnu.org/avr-libc/user-manual/modules.html
https://www.nongnu.org/avr-libc/user-manual/modules.html
https://www.ubuntu.com/
https://www.debian.org/
https://techterms.com/definition/terminal
https://techterms.com/definition/terminal

[16] AVR toolchain installation, Setting up AVR-GCC Toolchain on Linux
and Mac OS X, MaxEmbedded, http://maxembedded.com/2015/06/

setting-up-avr-gcc-toolchain-on-linux-and-mac-os-x/

[17] AVR Toolchain Overview, AVR Libc User Manual, https://www.nongnu.org/

avr-libc/user-manual/overview.html

[18] chmod User Manual, chmod - change file mode bits, man page, http://man7.org/
linux/man-pages/man1/chmod.1.html

[19] avr-gcc User Manual (conforming to the original gcc manual), gcc - GNU project C
and C++ compiler, man page, http://man7.org/linux/man-pages/man1/gcc.1.
html

[20] ARDUINO UNO REV3, Technical Specifications, store.arduino.cc,
https://store.arduino.cc/arduino-uno-rev3

[21] avrdude User Manual, 2. Command Line Options, Savannah software
forge, https://www.nongnu.org/avrdude/user-manual/avrdude_3.html#

Command-Line-Options

[22] Arduino Official Library Reference, Serial.begin() function, arduino.cc,
https://www.arduino.cc/en/serial/begin

[23] ELF binary, Executable and Linkable Format, Wikipedia, https://en.wikipedia.
org/wiki/Executable_and_Linkable_Format

[24] C preprocessor, C Programming/Preprocessor directives and macros, C programming
Wikibook, https://en.wikibooks.org/wiki/C_Programming/Preprocessor_

directives_and_macros

[25] Multiple inclusion of C header files, Include guard, Wikipedia,
https://en.wikipedia.org/wiki/Include_guard

[26] C functions declaration and definition, What is the differ-
ence between a definition and a declaration?, user’s question on
StackOverflow, https://stackoverflow.com/questions/1410563/

what-is-the-difference-between-a-definition-and-a-declaration

[27] ATmega 328P datasheet, Sparkfun, https://cdn.sparkfun.com/assets/c/a/8/e/
4/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf

[28] Arduino Hacking, ATmega168/328P-Arduino Pin Mapping, arduino.cc, https://

www.arduino.cc/en/Hacking/PinMapping168

[29] Maurizio Palesi, The DLX Instruction Set Architecture Summary, CiteSeerX
scientific literature digital library, http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.710.734&rep=rep1&type=pdf

[30] Fritzing, open source and community-driven circuit board designing software,
http://fritzing.org/home/

[31] Red Led, LED - Basic Red 5mm, item description, Sparkfun,
https://www.sparkfun.com/products/9590

77

http://maxembedded.com/2015/06/setting-up-avr-gcc-toolchain-on-linux-and-mac-os-x/
http://maxembedded.com/2015/06/setting-up-avr-gcc-toolchain-on-linux-and-mac-os-x/
https://www.nongnu.org/avr-libc/user-manual/overview.html
https://www.nongnu.org/avr-libc/user-manual/overview.html
http://man7.org/linux/man-pages/man1/chmod.1.html
http://man7.org/linux/man-pages/man1/chmod.1.html
http://man7.org/linux/man-pages/man1/gcc.1.html
http://man7.org/linux/man-pages/man1/gcc.1.html
https://store.arduino.cc/arduino-uno-rev3
https://www.nongnu.org/avrdude/user-manual/avrdude_3.html#Command-Line-Options
https://www.nongnu.org/avrdude/user-manual/avrdude_3.html#Command-Line-Options
https://www.arduino.cc/en/serial/begin
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikibooks.org/wiki/C_Programming/Preprocessor_directives_and_macros
https://en.wikibooks.org/wiki/C_Programming/Preprocessor_directives_and_macros
https://en.wikipedia.org/wiki/Include_guard
https://stackoverflow.com/questions/1410563/what-is-the-difference-between-a-definition-and-a-declaration
https://stackoverflow.com/questions/1410563/what-is-the-difference-between-a-definition-and-a-declaration
https://cdn.sparkfun.com/assets/c/a/8/e/4/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
https://cdn.sparkfun.com/assets/c/a/8/e/4/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
https://www.arduino.cc/en/Hacking/PinMapping168
https://www.arduino.cc/en/Hacking/PinMapping168
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.710.734&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.710.734&rep=rep1&type=pdf
http://fritzing.org/home/
https://www.sparkfun.com/products/9590

[32] AVR mixed programming example, Combining C and assembly source files, AVR
Libc User Manual, https://www.nongnu.org/avr-libc/user-manual/group_

_asmdemo.html

[33] C language variables, C Programming/Variables, C programming Wikibook,
https://en.wikibooks.org/wiki/C_Programming/Variables

[34] ATmega 328P assembler instruction set, Microchip, http://ww1.microchip.com/

downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf

[35] Assembly .global keyword, “global main” in Assembly, user’s question
on StackOverflow, https://stackoverflow.com/questions/17882936/

global-main-in-assembly

[36] Stack program memory area, Memory Layout of C Programs, GeeksForGeeks,
https://www.geeksforgeeks.org/memory-layout-of-c-program/

[37] Tutorial on LEDs, Light-Emitting Diodes (LEDs), Sparkfun,
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds/all

[38] while loop construct tutorial, C Programming while and do...while Loop, Programiz,
https://www.programiz.com/c-programming/c-do-while-loops

[39] SPI full-duplex data transmission protocol, Serial Peripheral Interface, Wikipedia,
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

[40] SPI Tutorial, Serial Peripheral Interface, Sparkfun, https://learn.sparkfun.com/
tutorials/serial-peripheral-interface-spi/all

[41] MAX7219 8-LED digit display driver, Maxim Integrated,
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf

[42] 1088AS 8x8 led matrix tutorial, How to Use the MAX7219 to drive an 8x8 LED
display Matrix on the Arduino, Best-Microcontroller-Projects.com,
https://www.best-microcontroller-projects.com/max7219.html

[43] SPI’s Daisy Chain configuration, Serial Peripheral Interface, Wikipedia,
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#Daisy_

chain_configuration

[44] LCD display CFAH1602XYYHJP v2.0 datasheet, CrystalFontz, https://www.

crystalfontz.com/products/document/964/CFAH1602XYYHJP_v2.0.pdf

[45] ASCII-compatible character encoding, ASCII, Wikipedia, https://en.wikipedia.
org/wiki/ASCII

[46] HC-SR04 ultrasonic distance measurement sensor datasheet, ElecFreaks, https://
www.mouser.com/ds/2/813/HCSR04-1022824.pdf

[47] LCD Programming Example using ‘C’, Eight-bit interface using software time
delays, Donald Weiman, Alfred State College of Technology, State University of
New York, http://web.alfredstate.edu/faculty/weimandn/programming/lcd/

ATmega328/LCD_code_gcc_8d.html

78

https://www.nongnu.org/avr-libc/user-manual/group__asmdemo.html
https://www.nongnu.org/avr-libc/user-manual/group__asmdemo.html
https://en.wikibooks.org/wiki/C_Programming/Variables
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
https://stackoverflow.com/questions/17882936/global-main-in-assembly
https://stackoverflow.com/questions/17882936/global-main-in-assembly
https://www.geeksforgeeks.org/memory-layout-of-c-program/
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds/all
https://www.programiz.com/c-programming/c-do-while-loops
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all
https://datasheets.maximintegrated.com/en/ds/MAX7219-MAX7221.pdf
https://www.best-microcontroller-projects.com/max7219.html
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#Daisy_chain_configuration
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#Daisy_chain_configuration
https://www.crystalfontz.com/products/document/964/CFAH1602XYYHJP_v2.0.pdf
https://www.crystalfontz.com/products/document/964/CFAH1602XYYHJP_v2.0.pdf
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/ASCII
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf
http://web.alfredstate.edu/faculty/weimandn/programming/lcd/ATmega328/LCD_code_gcc_8d.html
http://web.alfredstate.edu/faculty/weimandn/programming/lcd/ATmega328/LCD_code_gcc_8d.html

Thanks

I would like to thank each and every one who supported me throughout this (very, very
long) experience of studying Computer Engineering. My parents, without whom I would
have had many more difficulties with my studies and with my life in general, for having
been so supportive. My friends, who have always been encouraging about my accom-
plishment, to the point that became necessary for me to prove them they were right,
that I could actually make it! To my thesis supervisor, professor Stefano Mattoccia, who
allowed me to have something to work on that was a bit unusual between IT and Com-
puter Engineers, but nonetheless stimulating. To everybody who understood the struggle
I was passing through, by having to deal with all the difficulties that my university course
brought to me, during these heavy years.

I would also like to dedicate my work to all those friends and classmates that did
not make it through with their studies, who approached together with me the School
of Engineering and Architecture, but ultimately left before having gained a title. They
paradoxically inspired me to move forward, to have my chance of victory, not on them
but for them, to make them feel that, after all, it was all definitely worth a try. It has
not been a loss of time! I have finally become the professional figure I had always dreamt
to be. I wanted the bigger picture. I think I have finally found it in how computers are
designed, built and organised.

Riccardo Muggiasca
March 5th, 2019

	Motivations
	Introduction
	What are we going to talk about?

	The AVR Development Environment
	Definitions
	Installation
	Compiling and Loading our Firmware

	The AVR Arduino custom library
	How it is made
	avr_arduino.h
	C preprocessor directives
	Inclusion of external libraries
	Macro definitions
	Function declarations
	Ports
	Bit indexes
	Value or direction?
	Data types

	avr_arduino.c
	Inclusions and definitions
	port_pin() function
	Behaviour

	port_setup() function
	Behaviour

	port_setup_full() function
	Behaviour

	Assembler
	Why we do this
	Differences with DLX
	What we are going to do
	Schematic
	Technical notes

	What we need
	assembly.h
	Preprocessor directives
	Macro definitions
	register variables

	assembly.sx
	Why .sx and not .c?
	Inclusions and definitions
	asm_add() function
	Labels
	Behaviour

	asm_xor() function
	Behaviour

	asm_lsl() function
	Behaviour
	Proper use

	led8.h
	Hardware compatibility disclaimer
	Preprocessor directives
	Macro definitions
	Function declarations

	led8.c
	Inclusions and definitions
	led8_init() function
	Behaviour
	LEDs with negative logic

	led8_start() function
	Behaviour

	led8_operands() function
	Behaviour
	A NOT assignment

	led8_math() function
	Behaviour

	led8_logic() function
	Behaviour

	led8_shift() function
	Behaviour
	Functional details

	assembly.c
	Inclusions and definitions
	main() function
	Behaviour
	Endless loop

	Scoreboard
	The SPI Interface
	Master and Slave

	The 1088AS 8x8 LED Matrix
	The single component
	How it works
	Connector pins
	Data transfer procedure
	Data packet format
	Big Endianness
	Positive edge trigger and shifting

	A LED matrix multiplied by 4
	Led and bit mapping

	What we are going to do
	Schematic
	Arduino SPI pins

	What we need
	spi_master.h
	Inclusions and definitions
	Function declarations

	spi_master.c
	Inclusions and definitions
	spi_init() function
	Behaviour
	Chip Select's negative logic

	spi_send() function
	Variables and initialisation
	Loop cycles
	Bit discrimination
	Address/Data bit output
	Clock positive edge trigger
	Data transfer ending

	ledmatrix.h
	Inclusions and definitions
	REG constants
	LEDS constants
	Generic constants

	Function declarations

	ledmatrix.c
	Inclusions and definitions
	ledmatrix_setup() function
	Behaviour

	ledmatrix_operate() function
	Behaviour
	Device-specific functional note

	ledmatrix_zero() function
	Behaviour
	The influence of data overflow

	ledmatrix_example() function
	Behaviour
	Letter data shifting
	The four letters on display

	ledmatrix_random() function
	Behaviour
	Alphanumeric note

	scoreboard.c
	Inclusions and definitions
	main() function

	Sonar
	The 1602A v2.0 16x2 LCD display
	How it works
	Connector pins

	The HC-SR04 ultrasonic distance sensor
	How it works
	Pulse format
	Connector pins

	The speed of sound within the Arduino Uno
	From meters to millimeters
	ATmega's counter recalibration

	What we are going to do
	Schematic
	Relevant notes

	What we need
	lcd.h
	Inclusions and definitions
	Function declarations

	lcd.c
	Inclusions and definitions
	The firmware programmer's extensive note
	lcd_ports() function
	Behaviour

	lcd_data() function
	Behaviour
	Visibility

	lcd_write() function
	Behaviour
	Visibility

	lcd_setup() function
	Power-up delay
	Device reset procedure
	Final touches

	Note on lcd_write() calling
	lcd_string() function
	Behaviour

	lcd_line() function
	Behaviour

	sensor.h
	Inclusions and definitions
	volatile variables

	sensor.c
	Inclusions and definitions
	sensor_ports() function
	Behaviour

	sensor_setup() function
	Behaviour

	sensor_trigger() function
	Behaviour

	ISR(PCINT0_vect) interrupt handler
	Behaviour

	sonar.c
	Inclusions and definitions
	main() function

	Conclusions
	Arduino, but without its IDE
	The AVR Arduino library's purpose
	The three experiments
	An open-sourced thesis

